
PIC PULSE GENERATOR DOCUMENTATION (Version 1.00)

© T.P.Crane, 21−SEPT−1998 19:57:26.
Last revised: 13−NOV−2000 16:45:26.
(1) History & Introduction

The PIC Pulse Generator is the latest in a line of Pulse Generators designed and
build by the NMR group. The first unit due to Tony Kent is a standalone design based on a
Z80 microprocessor with control and display via front panel keys and 7−segment LED
displays.

The next Pulse Generator design used a BBC B Microcomputer to enter, edit,
display and generate the pulse sequence. Counter/timers in the machine’s VIA 6522 I/O chip
actually produced the raw pulses which were cleaned up and made available to the outside
world by a simple user−port plug−in demultiplexer box. With almost all of the work being
done in software it made for a flexible easy−to−modify pulse generator. The idea for the
editing display is from Brian Cowan and the software was written by the author.

Upgrading to the then new 32bit RISC processor Archimedes machines, the
next pulse generator (software) used the same demultiplexer box, which was driven again by
a 6522 VIA chip on the plug−in Acorn I/O card which emulated the I/O facilities of the
BBC Micro on the Archimedes. Unfortunately this design suffered from delay−length
‘jitter’ of the order of a few µS. The jitter is due to the refresh of the computer’s DRAMS,
making it difficult or impossible to eliminate. While not making the system unuseable it is
undesirable. As a consequence this design was never used in experimental work and
prompted yet another design.

The 50MHz pulse generator was designed with very short (sub−microsecond)
pulses for NMR work on solids in mind. It uses the same Archimedes data entry/display
system and is also controlled in realtime by the Archimedes via the I/O card’s 1MHz bus.
Both pulses and delays are produced by custom 32bit, mutually triggering counter/timers
inside the 50MHz pulse generator box. The logic was designed by Alan Betts. This approach
eliminates the delay−jitter problems of the previous design.

There are a number of drawbacks to these computer based pulse generators
which have prompted the design of the PIC pulse generator. Some of these are;

� Locks up a expensive computer for a relatively trivial job which
could easily be doing something more befitting its capabilities. � Computers and their monitors are notorious sources of RF noise
which finds its way into spectrometers etc. to which the pulse
generator is attached. The noise stems from crystal clocks inside the
computer which together with the Fourier components of their
division frequencies (production of which are an inherent feature of
the busses of microprocessors) produce a broad frequency swathe of
radio frequency pollution. Opto−isolation is usually only partially
effective in removing the noise which is often highly frequency stable
making it difficult to remove by signal averaging. This is because it
can get into spectrometers via a variety of routes; Busses inside and

outside the computer/monitor can act as antennas, radiating the
signals. Being high frequencies they can capacitatively couple across
opto−isolators. They can be induced in the braid of coax cables,
propagate via earth loops etc.

The PIC pulse generator is based around 8+3 PIC16C84 or PIC16F84
microcontroller chips and a 2KByte EEPROM memory chip to store pulse sequences. Each
PIC16C/F84 chip contains only 1Kword EEPROM program memory, 36/68 bytes of RAM,
and 64 bytes of non−volatile data EEPROM − hence the need for the multiple chips across
which the functionality of the design is split. PIC chips use the Harvard Architecture for
security reasons and hence all their busses (to memory, I/O ports etc.) are internal to the chip
which should eliminate the bus−radiating problems of computers and microprocessor
designs using the traditional Von Neumann architecture. The instrument’s display uses a
4� 16 digit LCD module for data entry/display plus a few LEDs. Again this should be much
less noisy than a computer monitor. The design attempts to reproduce the data entry &
editing display of the previous computer based ones by using the LCD as a ‘window’ which
scrolls up and down a ‘virtual’ editor display.

New Features in PIC Pulse Generator Version 1.00:� Software support for the pulse generator's 'Computer Port' has been
written. Now a remote computer can control the unit, downloading
pulse sequences and starting pulse generation. Note: The two
additional PICs (PIC#7 & 8) which contain the computer interface
code must be the PIC16F84 type because their code uses the extra
RAM registers.

(2) User Guide
(A) Initial Data Entry.
This is the same as previous designs. The required input is;� Number of Pulses in the sequence� Pulse to recycle to� Number of times to recycle (Enter 0 for infinity)� The Pn/Dn labels and channel specifiers for the N pulses specified

above. The Pn/Dn labels can be anything in the range P1−P8 &
D1−D8. The channel specifiers list the channel(s) each pulse will
appear on. They are lists of between 1 and 8 digits in the range
1−8 in any order. Egs. “5” for pulse#2 means the second pulse in
the sequence will emerge on channel 5 only. “6254” for pulse#7
would mean the 7th pulse emerges on channels 2,4,5 & 6.� The values and units of the pulses and delays. Values are in the range
1−16383 for pulses and x−16383 for delays, where the ‘x’
depends on the position of the delay in the sequence. See
specifications section below for more details. Units are one of;
µS, mS, Seconds or Minutes. Values are typed first and entered

with the <Enter> key. Units are entered by hitting <Enter> over
the the required symbol in the “µmSM” prompt.

The pulse sequence is then complete and control passes to the editor menu.

 (B) Pulse Sequence Editing.
As mentioned above the pulse sequence editor is accessed by scrolling the LCD

window around the virtual display using the 4 cursor keys and modifying the sequence using
other key−strokes. Here is an annotated example pulse sequence from the virtual display.

(a0)
(a1) P1 2 3 4 5 6 7 8
(a2) D1 2 3 4 5 6 78
(a3) C C C C C C C C
(a4) 1 1 1 1 3 4 5 3
(a5) 2 2 6
(a6) 3 7
(a7) 4
(a8) 5
(a9) 6
(a10) 7
(a11) 8

(b0) P1=1µS
(b1) P2=12µS
(b2) P3=123µS
(b3) P4=1234µS
(b4) P5=12345µS
(b5) P6=140mS
(b6) P7=100mS
(b7) P8=2089mS

(c0) D1=100µS
(c1) D2=12345µS
(c2) D3=1mS
(c3) D4=10mS
(c4) D5=100mS
(c5) D6=1000mS
(c6) D7=1Sec
(c7) D8=10Min

(d0) Recycle# 65123

The editing options for each line/group of lines are given below.
(a0) Both the number of pulses in the sequence and the recycle−to position can be

altered by clicking the <Enter> key over the arrow−head or
arrow−tail moving left or right to the desired new position and
clicking <Enter> and second time. Naturally invalid choices such as
recycle-to pulse > number−of−pulses are rejected.

(a1−a2) Pn and Dn pulse/delay labels are modified by pressing a number key over the
pulse/delay # to be modified. The number pressed defines the new
Pn/Dn label.

(a3) Pressing a number key over the ‘C’ for a particular pulse will add that channel
to the list of channels the pulse will emerge from. That list is
displayed vertically over lines a4−a11.

(a4−a11) Pressing the <Delete> key over a channel specifier for a particular pulse will
remove that channel from the list of channels the pulse will emerge
from.

(b0−b7) Both the Pn pulse label values and units can be modified here.
(a) To modify the value − overtype it with the new value and hit

<Enter> over any part of the number to enter it. Hit <Delete> to
discard any changes made. Note: to change for example, 1000 	
100, the string “1000” can be overtyped with “0100”.

(b) To modify the units − Hit <Enter> over any part of the units
string, eg. over the ‘S’, ‘e’ or ‘c’ of “Sec”. The units chooser
string “µmSM” then appears. Finally, hit <Enter> over a symbol
for the desired new units.

(c0−c7) Editing the Dn delay labels is the same as for Pn pulse labels. There are some
additional issues here which relate to µS units delays. If too small a
value is entered for a particular delay pointed to by a label an error
message will be printed. The message will refer to a delay for which
the value was too small. Note: This does not necessarily imply that
delay was the only one for which the value was too small. It does not
even necessarily mean that delay had the longest minimum acceptable
value of the delays referred to by that label. After the error message
the delay value will be unchanged and the user must leave it
unchanged or choose a larger value.

A similar situation can occur when Dn units are modified. Eg. if a particular Dn
was 5mS and the user modified the units to µS an error will occur
because the pulse generator cannot generate a delay as short as 5µS.
The units will remain unchanged and the user must first change the
Dn value to something acceptably larger and then change the units to
µS. Note: Under certain circumstances Dn label values with µS units
can alter ‘spontaneously’ by a few 10s of µS when edits are made in
lines a0−a2. This is an unfortunate side effect of the way pulse
sequence information is stored in the PIC chips memory together with
the very limited amount of memory available in these chips. A future

revision of the software may modify this behaviour. In the mean time
the user should check Dn label values after any modifications in lines
a0−a2.

There are some additional issues concerning the recycle delay in slave
sequences the user should be aware of: The slave board recycle
period synchronisation modification in vers. 0.21 makes the slave
board recycle delay value entered by the user effectively redundant
since it is now controlled by the master pulse generator − that is, the
slave boards pulse sequences now recycle when the master boards
signals them to. For compatibility with the filesystem and master
sequences, the user still must enter a value for the slave board recycle
delay. It is the responsibility of the user to enter a suitably short value
such than the total slave board pulse sequence length is shorter than
that of the total master pulse sequence. Note: If this condition is not
fulfilled, the result should be that the slave board sequence will
recycle eg. once for every-other master pulse sequence recycle.
Entering a slave recycle delay of 150µS should be suitable for all
pulse sequences and is therefore the recommended value. For simple
pulse sequences smaller values may be used if a very short repetition
time is needed, check with PIC Pulse Generator specs. below or
reduce from 150µS by trial-and-error in the pulse sequence editor.
Please advise the author of any problems related to slave recycle
delays.

(d0) The Recycle value gives the number of times the repeat part of the pulse
sequence encompassed by line a0 will be repeated. As with Pn/Dn
label values the number is typed with numeric keys and entered with
the <Enter> key. Specifying 0 produces an infinite recycle count.

(C) Accessing the pulse sequence EEPROM based file-system.
The file-system is accessed via the <Menu> key and may be entered at the

initial "Nos Pulses ? " prompt and at most places in the Editor
Menu described above. The initial menu appears as follows;

Filesys Slv Brds

Scrolling left with the
 cursor key and hitting <Enter> over any part of the
string "Filesys" will access the file-system menu which appears
as follows, eg;

LD SV RN DL EXIT

12 Tom's T1

From here;
 � The � & cursor keys can be used to chose between the options

displayed on the top row (respectively LOAD, SAVE, RENAME,
DELETE the current pulse sequence and EXIT the file-system menu.

 � The
�

 & � cursor keys scroll through the file-system's catalogue of
pulse sequences. The example above shows the 12th pulse sequence
whose name is "Tom's T1" is the currently selected one. In this
version of the pulse generator 26 pulse sequences can be stored by the
file-system.

� Loading a pulse sequence − Press <Enter> while the cursor is over the 'LD'. If
successful the system responds with 'Done.'

� Saving a pulse sequence − Press <Enter> while the cursor is over the 'SV'.
The menu then displays, eg.;

LD SV RN DL EXIT

New?
12 Tom's T1

The pulse sequence can then be saved with the same name (Tom's T1) or a new
name can be entered. Hit <Enter> to save under the same name. Hit �
or � cursor keys to enter a new name. The menu then responds;

LD SV RN DL EXIT
ABCDEFGHIJKLMNOP
New?
12 Tom's T1

The new filename is constructed by choosing characters from line#2 and
inserting them into line#3. The � & � keys toggle the cursor between
lines 2 & 3. The � & � keys select which character to choose from
line#2 and where to place it in the filename being constructed in
line#3. Hitting <Enter> over a character in line#2 selects that
character and hitting <Enter> over a position in line#3 inserts the

selected character at that position. Hitting <Enter> over line#3 a
second time completes the operation and saves the pulse sequence.
Any‡ of the 256 characters generated by the display can be used in a
filename and are accessed by using the � and � keys to scroll
line#2. Note: The display generates many special symbol characters
as well as a variety of accented characters. Some example filenames/
pulse sequences have been pre-inserted into the EEPROM.

‡ There is one exception.
The undefined character
which occurs one place
to the left of the first
instance of the ‘µ’ may
not be used.

� Renaming a pulse sequence − Press <Enter> while the cursor is over the 'RN'.
The menu then displays, eg.;

LD SV RN DL EXIT
ABCDEFGHIJKLMNOP
Mod?Tom's T1
12 Tom's T1

The procedure for modifying the filename displayed in line#3 with characters
selected from line#2 is the same as described above for saving a pulse
sequence with a new name.

� Deleting a pulse sequence − Press <Enter> while the cursor is over the 'DL'.
The menu then responds with "Sure?" . Hit <Enter> to confirm the
delete operation or hit any other key to back out.

� Exiting the file-system menu − Press <Enter> while the cursor is over the
'EXIT'. If a pulse sequence was loaded from the EEPROM or a pulse
sequence was already present before the file-system menu was
invoked, control passes to the editor menu, otherwise control passes
to the initial data entry procedure for a pulse sequence to be entered.

(D) Operating the Slave pulse generator boards.
The Slave pulse generator boards are accessed in exactly the same way as the

Master pulse generator. Two new concepts and a new menu have been added to control the
Slave boards. The two concepts are;

(1) The notion of a ‘currently selected pulse generator board’
(2) The Enable/Disable status of a Slave pulse generator board.

Both entities can be displayed and altered via the Slave Board's menu which is accessed
from the main menu;

Filesys Slv Brds

by hitting <Enter> over any part of the string "Slv Brds" . An example Slave boards
menu is;

Mastr/Slave Menu
Status: EDD
Selected: 0

The Enable/Disable status of the 3 slave boards is shown on line 2 and the currently selected
pulse generator board is shown on line 3. In the example slave board#1 is enabled, slave
boards#2 & #3 are disabled and the currently selected pulse generator board is board#0 − the
master pulse generator. The currently selected pulse generator board can be changed by
hitting a numeric key in the range [0−3], 0 being the master pulse generator board and 1−3
being the 3 slave boards. The enable/disable status of the 3 slave boards can be changed by
making that slave board the currently selected board (ie. hit a numeric key 1−3) and then
using any of the cursor keys to toggle its enable/disable status. To leave the slave boards
menu, hit <Enter> which returns the system to the main pulse sequence editing menu.

From this point hitting the <Start/Stop> key will cause the currently selected
pulse generator board to be loaded with the pulse sequence displayed
in the editor menu and pulse generation (on the master pulse
generator board plus any enabled slave boards) to be started.

Alternatively, pressing the <Load> pulse sequence key will only result in the
currently selected pulse generator board being loaded with the pulse
sequence displayed in the editor menu. The <Load> pulse sequence
key permits each of the pulse generator boards to be preloaded with
what ever pulse sequence is required before starting pulse generation.
This is the way a parallel pulse sequence is built up.

Note (1) As far as the editor menu and file-system is concerned, each pulse
sequence loaded into each pulse generator board is a separate entity
which must be saved as an entry in the file-system if it will need to be
edited or reused in the future or on another pulse generator board.

Note (2) The master pulse generator board is always enabled and therefore
must have a pulse sequence loaded into it for pulse generation to
work. If the system is booted, pulse sequences only loaded into the
slave board(s) and the <Start/Stop> key is pressed then pulse
generation will not start. Instead, the error message "MPS?" (ie.

Master Pulse Sequence?) will be displayed and the pulse sequence
editor menu will be reentered.

(E) Stopping/Starting Pulse Generation.
The <Start/Stop> key starts pulse generation. It will continue until the recycle

count is reached or a user hits the key again to stop pulse generation. Note: If the <Start/
Stop> key is pressed during a pulse that pulse will be cut short. For this reason it is a bad
idea to hold down the <Start/Stop> key in the hope of ‘manually recycling’ the pulse
sequence. The <Start/Stop> button’s LED lights when pulse generation is in progress. After
pulse generation has finished the editor display is reentered.

(F) Other Features.�
Pressing the <Escape> key software resets the pulse generator
and restarts it at the initial pulse sequence entry point.� The pulse generator has an external clock input facility. Selecting
this will affect all timing within the system. This is because all
timing within the unit is derived from the clock. Internally a
4MHz clock is used. If for example an 8MHz external clock is
applied, all pulses and delays produced will be ½ the displayed
values. A front panel LED indicates whether internal or external
clock is in operation. The ‘Bleep disable’ key can be used to disable the bleeper which
produces the ‘keyclick’ etc. This a latching key and its LED
reflects the enable/disable status of the bleeper. ! The system has a hardware reset button on the back−panel. This
can be used to regain control of the system in the event it hangs." In contrast with the previous microcomputer based pulse
generators the PIC system does not use a relatively slow BASIC
interpreter to produce the recycle delay. Consequently minimum
recycle delays are only marginally longer than those of other
delays. Be aware therefore that if you erroneously specify a
recycle delay of say 100µS it will happily generate it, burning out
the transmitter/frying your sample etc. You have been warned!

(G) The Computer Control Interface (CCI).
This section describes the operation of the pulse generator from a computer.#

 The pulse generator's computer interface is an 8-bit parallel port
with 2 handshake lines, modelled on the BBC Micro's User Port.
Only the CB2 handshake line is currently used.$ The protocol used by the computer to communicate over this port
with the pulse generator is the Multi Address System Protocol
(MASP) due to Alan Betts (AKB). The rest of this section
assumes familiarity with the MASP.% Not all of the functionality of the pulse generator's front panel is

currently available over the CCI. The remote computer may
define and download pulse sequences to the Master and Slave
boards and also start pulse generation. There is no remote
computer access to the pulse generator's EEPROM filesystem.
Neither is it possible to prematurely stop pulse generation via the
CCI. For this reason the remote computer is unlikely to want to
program an infinite-recycle count (Master) pulse sequence. Due
to architectural limitations in the pulse generator's hardware, it
cannot constantly scan its computer port looking for input from
the computer − in contrast with previous simpler MASP devices
produced by AKB. Unlike the simpler MASP devices the pulse
generator does not respond instantly (eg. typically within
<100nS) to commands over the MASP bus. This is because the
pulse generator's MASP parsing/handling runs on
microcontrollers rather than dumb logic. It is essential the
computer programmer takes account of these limitations when
coding. Techniques for dealing with them are discussed in more
detail later. See also the in-program comments in the BASIC
example programs. & Note: Some example programs are given below in BBC BASIC.
References in the following text to the BASIC examples are
typeset in green for clarity.

' Controlling The Pulse Generator From The Computer.

(1) Initialisation. After booting the pulse generator will be in
the MASP bus unaddressed state and must be put in the
addressed state before it will accept any other commands. As laid
down in the MASP specification, each device on the MASP bus
has a unique ‘factory defined’ 5-digit address. The PIC Pulse
generators have addresses of the form "PPGxy" where x & y
will typically be numbers eg. "01", "02" etc. for each pulse
generator built/upgraded. See PROCaddress_device in
BASIC example programs.
Note (a). Before the remote computer sends the 5-digit address, it
must ‘get the attention’ of the pulse generator's MASP bus
handling code. The recommended way to do this write a zero-
byte several times on the MASP bus with bit7=0. This MASP
command mode input will be ignored by other MASP devices but
the pulse generator will see the MASP data-valid hi (lo
transitions and start listening for its upcoming MASP address.
See PROCsee_dv in the BASIC example programs.
Note (b). The pulse generator must receive its 5-digit address
bytes contiguously with each byte being received within the pulse
generator's input byte timeout period of ~65mS, for it to become

MASP addressed. The scheme allows the pulse generator's
internal hardware to return to scanning the front panel keyboard
if it does not become addressed within the timeout periods − eg.
if some other MASP device on the bus was being accessed.

(2) Command Mode. Once addressed, the pulse generator will
accept commands in MASP Command Mode (bit7=0) and Data
Mode (bit7=1). The pulse generator has no device dependent
Instruction Mode commands − all device dependent commands
to the instrument are sent in MASP Data Mode. The three
essential MASP Instruction Mode commands as described in the
document 'MAS_REVIEW.DOC' by AKB are implemented and
are;

 '@’ − Unaddress the device. ie. clear the ENINT ‘flag’ and
 return to front panel control.

 '<’ − Prepare to reverse buffers and send data to computer
 (Read Device Mode, sets ‘flag’ ENWR=1).

 '>’ − Revert to Computer) Device data mode
 (sets ‘flag’ ENWR=0).

Anything else sent in Instruction Mode is ignored.

(3) Data Mode. All Data Mode commands must be terminated
with <CR>, that is ASCII (13 + 128). See
PROCwrite_data_string in the BASIC example
programs. The Data Mode commands closely model the front
panel commands. The full set of Data Mode commands is as
follows;

 Command Argument Range Command Description Equiv. line in Sec.(B)
 NP=<n> 1<=n<=8 Number of pulses in sequence a0
 RT=<m> 1<=m<=n Recycle-to position a0
 PL<y>=<x> 1<=y<=n, 1<=x<=8 Pulse Label a1
 DL<y>=<x> 1<=y<=n, 1<=x<=8 Delay Label a2
 CH<y>=<string> eg. “1235678”, 1<=y<=n Channel specification a4−a11
 PV<x>=<numeric string><units string> Pulse Value b0−b7
 1<=x<=8, <units string> is one of “uS”, “mS”,

 “Sec” or “Min”. NB: <numeric string> is
 between 1 and 5 characters long,

 eg. “PV6=12345uS”.
 DV<x>=<numeric string><units string> Delay Value (args as Pulse value) c0−c7
 RC=<numeric string> Recycle count, range is [0−65535] d0

 NB: 0=Infinite count
 SB=<a> 0<=a<=3 Select pulse generator board,

 0=master, [1−3]=slave boards #[1−3]
 BS=‘E’ or ‘D’ Enable or disable selected board
 LB Load sequence into selected board
 GO Start pulse generation using pulse sequence

 created by remote computer.
 GOI Start pulse generation (immediate) − that is
 using whatever pulse sequence was previously
 loaded; from remote computer or via the front

 panel. Caution: No checks on pulse sequence

 validity are made − it is used 'as is'.

Miscellaneous notes: Commands NP through to RC are
mandatory and must all be present to define a valid pulse
sequence. As with front panel entry, by default the master board
is selected and the three slave boards are disabled. If slave pulse
boards are to be used, they must be Selected (SB=<a>), Enabled
(BS=E) and then Loaded (LB).

(4) Read Device Mode. In this special mode, described in detail
in the document 'MAS_REVIEW.DOC', after receiving the '<’
in Command Mode, the pulse generator is able to send strings
back to the computer. In these responses, which can and should
ideally be requested after every command is sent, the pulse
generator indicates if the command was valid and if not, gives an
indication of what was wrong with it. Most responses consist of
two-letter strings. See PROCdisp_str and
FNread_data_string in the BASIC example programs. All
strings are <NULL> terminated. The complete list of responses
follows;

Response | Meaning Commands which may produce it Explanation
?? Default Response ** Pulse generator response requested before any commands sent
OK Valid Command ** Command was OK **
UC Unrecognised Command ** Command was unrecognised **
IA Invalid Argument NP=<n> Invalid <n>

RT=<m> Invalid <m>
PL<y>=<x> Invalid <x> or <y>
DL<y>=<x> Invalid <x> or <y>
CH<y>=<string> Invalid <y> or <string>
PV<x>=<numeric string><units string> Invalid <x> or

 <1 or >5 chars. in numeric
 string

DV<x>=<numeric string><units string> Invalid <x> or
 <1 or >5 chars in numeric
 string

RC=<numeric string> Nonnumeric chars in string
BS=<arg> <arg> is not 'D' or 'E'

IU Invalid Units PV<x>=<numeric string><units string> 1st char of units invalid
DV<x>=<numeric string><units string> 1st char of units invalid

TS Too Small PV<x>=<numeric string><units string> Number was too small
DV<x>=<numeric string><units string> Number was too small

TB Too Big PV<x>=<numeric string><units string> Number was too big
DV<x>=<numeric string><units string> Number was too big

MP Master Pulse? GO Pulse generation was
 requested but no pulse
 sequence was loaded into
 master pulse generator.
 See also front panel error
 "MPS?"

Consistency Checking errors produced by GO and LB commands
CCNP? Number of Pulses (NP) was not in the range 1−8
CCRT? Recycle-to position (RT) was not in the range 1−<Number of Pulses>
CCPL<y>? The label for the yth pulse (PL<y>=...) is missing

CCDL<y>? The label for the yth delay (DL<y>=...) is missing
CCPV<x>? The value+units of the xth pulse label (PV<x>=...) is missing
CCDV<x>? The value+units of the xth delay label (DV<x>=...) is missing

Consistency Checking on the pulse sequence is performed prior
to pulse loading and pulse generation (not GOI) to ensure all the
information needed to define the sequence is present and that it is
internally consistent. If the LB or GO commands produce an
error, pulse sequence loading or pulse generation does not take
place. The error should then be corrected before re-issuing the
command.

Note: Occasionally, the computer may erroneously
receive some ‘<’ characters embedded in the response string from
the pulse generator. This is caused by buffer direction switching
mis-synchronisation between the computer (sending the ‘<’
character to tell the pulse generator to switch to read device
mode) and pulse generator. It is a benign bug but one which the
computer programmer should be aware of if, for example,
parsing the response string to look for results other than ‘OK’.

(5) Timing & Related Issues. As mentioned above the pulse
generator, cannot always be scanning its MASP bus port. Neither
does it respond to commands on the MASP bus as fast as plain
logic devices do. Also, the MASP protocol has no provision for a
busy-line for the client device to signal the controlling computer
that it is not ready for input.

In the example BASIC programs the general tardiness
of the pulse generator in handling bus commands is dealt with by
inserting some delays. 10mS delays have been inserted into the
Data-Valid signalling, which is applied to each byte sent and
received, to ensure it is slow enough to be seen by the pulse
generator. Note: The 10mS is an arbitrary value, used in testing/
software development and significantly shorter values may well
work just as well. See PROCshort_delay in the BASIC
example programs.

After booting and also after pulse generation has
ceased, the computer must ‘get the attention’ of the pulse
generator's MASP bus handling code, before sending any other
commands. As already mentioned, sending multiple <NULL>
bytes on the MASP bus will cause the pulse generator to ‘see’ the
Data-Valid line being toggled and will (re-)activate its MASP
handling code ready to accept commands. See PROCsee_dv in
the BASIC example programs. After pulse generation has
finished, the front panel editor display will be updated with the
just-executed pulse sequence and front panel commands can be
entered again − eg. to examine the sequence in the LCD's editor

display. It is probably inadvisable to actually alter the pulse
sequence here because the computer interface is still active (
‘flag’ ENINT=1) and subsequent commands from the computer
will overwrite any changes made.

In the example BASIC programs, between each
complete command (eg. "NP=5") a delay of typically 2 seconds
has been inserted. This arbitrary value was largely to permit
viewing of commands as they executed, during software
development/debugging. It is likely that much shorter values will
work too. See PROCpause in PROCwrite_data_string in
the BASIC example programs.

It can be inconvenient for the computer to have to
calculate the length of time a pulse sequence should take to
execute and then wait that length of time before calling
PROCdisp_str in order to check on the validity of the
preceding GO command. See the BASIC example
program ppg_demo which operates this way. A
more elaborate version of the pulse generator response-reading
code is presented in example program ppg_demo2 . In this
second example program PROCdisp_str is called
immediately after the GO command is executed and
FNread_data_string loops to sample the MASP bus until
pulse generation has finished and the pulse generator is
responding to MASP bus commands again. See
FNread_data_string which is called by PROCdisp_str
in ppg_demo and ppg_demo2 for the details of these bus reading
schemes.

(6) Front Panel LED indicators. There are 2 front panel LEDs
which relate to the operation of the CCI. The ‘COMP’ LED is lit
when the pulse generator is under computer control − that is
when it is in the MASP addressed state and the ‘flag’ ENINT=1
as described in the document 'MAS_REVIEW.DOC'. The
‘DATA’ LED gives a visual indication of data passing between
the computer and pulse generator and is modelled on the data
LEDs typically found on Ethernet cards and hubs etc. Note: At
the time of writing, the current pulse generator boxes do not have
a DATA LED − this should be added when those units are given
this software (& hardware − see AKB) upgrade.

(7) The BASIC Example Programs. The two following
programs are demonstrations of working codes which download
pulse sequences to the pulse generator and then execute them.
They are intended as a guide to programmers working in BBC
BASIC/RISCOS or any other programming language/platform

such as Labview/Microsoft and have been heavily commented to
that end. The main part of the program at the top defines and
downloads the pulse sequence, with the work implementing the
MASP driver code etc. being done by lower level FuNctions and
PROCedures. The first example PPG_DEMO produces a very
simple pulse sequence to the master pulse board, and waits
‘manually’ while it executes. The second program PPG_DEMO2
produces plus loads a couple of simple pulse sequences for two
of the slave boards. Then it creates a more complicated sequence
for the master board before giving the GO command to
synchronously start the 3 boards generating their pulse
sequences. PPG_DEMO2 then calls PROCdisp_str to
‘automatically’ wait for pulse generation to finish and the
response string to be returned by the pulse generator. Both
programs end by giving the ‘@’ command to unaddress the pulse
generator and therefore relinquish control of the MASP bus.

Example Program PPG_DEMO

REM > ppg_demo
REM This program runs under RISCOS and drives the PIC pulse generator
REM using the MAS protocol through the User Port. The User Port H/W is provided
REM by the 6522 VIA chip on the Acorn I/O Podule. The software interface is via
REM the BASIC ‘SYS “Os_Byte” 150 and 151’ calls. For details see the Acorn I/O
REM Podule guide and Rockwell data book.
REM T.Crane, 3-JUL-2000 21:06:31
REM Revised, 9-NOV-2000 16:22:18
PROCinit :REM Initialise the system
ON ERROR PROCerror
PROCsee_dv: REM Get attention of PPG MASP code
PROCaddress_device(“PPG00”): REM Send its unique address to PPG

REM Send Data Mode commands to the PPG and read back and display the
REM response to each one with PROCdisp_str
PROCdisp_str
PROCwrite_data_string(“NP=1”): PROCdisp_str
PROCwrite_data_string(“RT=1”): PROCdisp_str
PROCwrite_data_string(“PL1=1”): PROCdisp_str
PROCwrite_data_string(“DL1=1”): PROCdisp_str
PROCwrite_data_string(“CH1=12345678”): PROCdisp_str
PROCwrite_data_string(“PV1=1000uS”): PROCdisp_str
PROCwrite_data_string(“DV1=1000uS”): PROCdisp_str
PROCwrite_data_string(“RC=1000”): PROCdisp_str
PROCwrite_data_string(“GO”):
REM Wait 2 seconds [1000*(1000uS pulse +1000uS delay] for pulses to finish
REM This is because PPG cannot communicate with us during pulse generation
TIME=0
REPEAT UNTIL (TIME > 200)
PROCsee_dv: REM Re-get attention of PPG MASP code
PROCdisp_str: REM Display result of GO command
REM Unaddress the PIC device and exit
PROCwrite_byte(ASC(“@”))
REM PPG is now under front panel control again
END
:
DEFPROCinit

PRINT “Initialising bus...”
SYS “OS_Byte”,151,&6C,244 :REM Initialise CB2=HI
PROCset_bus_read: REM Set MASP bus direction to read
ENDPROC
:
DEFPROCwrite_byte(byte%)
REM Write a byte on the MASP bus and send data valid
REM First check if bus is set to READ or WRITE
REM If MASP bus direction is READ then it must be set to WRITE
IF (rw_flag%<>0) THEN PROCset_bus_write
SYS “OS_Byte”,151,&60,byte%
PROCdv
ENDPROC
:
DEFPROCset_bus_read
REM Set the MASP bus direction (ie. VIA data direction register) to READ
SYS “OS_Byte”,151,&62,%00000000 : REM SET VIA DDRB TO READ MODE
rw_flag%=1 : REM Reflect bus direction in S/W flag
PRINT “******MASP bus set for READ”
ENDPROC
:
DEFPROCset_bus_write
REM Set the MASP bus direction (ie. VIA data direction register) to WRITE
SYS “OS_Byte”,151,&62,%11111111 : REM SET VIA DDRB TO WRITE MODE
rw_flag%=0 : REM Reflect bus direction in S/W flag
PRINT “******MASP bus set for WRITE”
ENDPROC
:
DEFPROCdv
REM Send Data Valid (Hi->Lo on the CB2 line) and wait for bus to “settle”
SYS “OS_Byte”,151,&6C,244 : REM CB2=HI
PROCshort_delay
SYS “OS_Byte”,151,&6C,192 : REM CB2=LO
PROCshort_delay
SYS “OS_Byte”,151,&6C,244 : REM CB2=HI
PROCshort_delay
ENDPROC
:
DEFPROCshort_delay
REM A short delay for the slow PIC H/W to see DV signals/settling time etc.
REM Settling time is 10mS
TIME=0
REPEAT
UNTILTIME>=1 : REM WAS 10
ENDPROC
:
DEFPROCwrite_data_string(string$)
REM This subroutine writes a data string on the MASP bus
REM Note: DATA as opposed to INSTRUCTIONS must have bit7 set
PRINT “Preparing to send data string to device... ”“”;
FOR A%=1 TO LEN(string$)
 VDU ASC(MID$(string$,A%,1))
 PROCwrite_byte(128+ASC(MID$(string$,A%,1)))
NEXT
PRINT “”“”‘“Sending string terminator <CR>”
PROCwrite_byte(13+128): REM <CR> Terminates string
PROCpause
PRINT “Data string now sent”
ENDPROC
:
DEFPROCaddress_device(string$)
REM Send the 5 bytes of chars and numbers to address the device
PRINT “Preparing to address device ”;string$;“...”

FOR A%=1 TO 5
 PROCwrite_byte(ASC(MID$(string$,A%,1)))
NEXT
PRINT “Device ”;string$;“ now addressed”
ENDPROC
:
DEFPROCpause
REM Simple subroutine to wait a 2 seconds for the user
REM to read the display etc.
TIME=0
REPEAT
UNTILTIME>200
ENDPROC
:
DEFFNread_data_string
REM Simple version - must not be called during pulse generation
LOCAL string$
string$=“”
REM This function reads a data string from the device
PRINT “Preparing to read a string from the PIC device...”
PROCwrite_byte(ASC(“<”)) :REM Send MASP “<” char and Hi->Lo->Hi on DV
PROCset_bus_read :REM Set MASP bus direction to read
REPEAT
 SYS “OS_Byte”,151,&6C,192 :REM Send CB2=LO
 PROCshort_delay :REM Wait for PIC to put byte on bus
 SYS “OS_Byte”,150,&60 TO ,,A% :REM Read byte put on bus by PIC device
 REM Read data should have the top bit set
 IF A% < 128 THEN PRINT “ERROR; A%=”;A% : STOP
 A% = A% AND 127 :REM Strip the top bit
 IF (A% >=32 AND A% < 127) THEN
 string$=string$+CHR$A%
 ENDIF
 PROCshort_delay :REM Wait for PIC to start watching for Lo->Hi on DV
 SYS “OS_Byte”,151,&6C,244 :REM Send CB2=HI
 PROCshort_delay :REM Wait for PIC device to disable its O/P buffer
UNTIL (A% = 0)
REM Terminator seen, all bytes now read from PIC device, Now;
REM (1) Turn bus direction to write
REM (2) Put “>” char on bus to signal PIC device must exit “Read Device Mode”
REM (3) Send DV (Hi->lo) so PIC device receives “>” & clears its ENWR flag
PROCwrite_byte(ASC(“>”))
=string$
ENDPROC
:
DEFPROCdisp_str
REM Read and display the error_string from the PPG
readstr$=FNread_data_string :REM Read a data string from device
PRINT “String was ”“”;readstr$;“”“”
ENDPROC
:
DEFPROCerror
Clean up MASP bus after any BASIC interpreter errors
PRINT ‘“ERROR HANDLER: Resetting CB2=HI (ie. DV=HI)”
SYS “OS_Byte”,151,&6C,244 :REM Reset CB2=HI
STOP
ENDPROC
:
DEFPROCsee_dv
REM Send multiple dummy data-valids to make the PPG invoke its MASP
REM handling code and prepare to read from the MASP bus
FOR I%=1 TO 10
 PROCwrite_byte(0): REM Make it see dv
NEXT I%

ENDPROC

Example Program PPG_DEMO2

REM > ppg_demo2
REM This program runs under RISCOS and drives the PIC pulse generator
REM using the MAS protocol through the User Port. The User Port H/W is provided
REM by the 6522 VIA chip on the Acorn I/O Podule. The software interface is via
REM the BASIC ‘SYS “Os_Byte” 150 and 151’ calls. For details see the Acorn I/O
REM Podule guide and Rockwell data book.
REM T.Crane, 3-JUL-2000 21:06:31
REM Revised, 9-NOV-2000 20:48:18
PROCinit :REM Initialise the system
ON ERROR PROCerror
REM Make the PPG see dv and prepare to read from the MASP bus
PROCsee_dv: REM Get attention of PPG MASP code
PROCaddress_device(“PPG00”) :REM Send its unique address to PPG

REM A more complicated example - First a couple of simple pulse sequences
REM are sent to slave boards 1 & 2. Then an 8-pulse sequence is sent to
REM the Master board.
REM Send Data Mode commands to the PPG and read back and display the
REM response to each one with PROCdisp_str
REM First the Slave boards pulse sequences
REM A 1-pulse sequence for Slave board#1
PROCwrite_data_string(“NP=1”): PROCdisp_str
PROCwrite_data_string(“RT=1”): PROCdisp_str
PROCwrite_data_string(“PL1=1”): PROCdisp_str
PROCwrite_data_string(“DL1=1”): PROCdisp_str
PROCwrite_data_string(“CH1=1”): PROCdisp_str: REM Put it on Chan. 1 only
PROCwrite_data_string(“PV1=1mS”): PROCdisp_str
PROCwrite_data_string(“DV1=100mS”): PROCdisp_str: REM 100mS arbitrary (<2Sec)
PROCwrite_data_string(“RC=0”): PROCdisp_str: REM RC=0 is OK on Slave boards
PROCwrite_data_string(“SB=1”): PROCdisp_str: REM select Slave board#1
PROCwrite_data_string(“BS=E”): PROCdisp_str: REM Enable it
PROCwrite_data_string(“LB”): PROCdisp_str: REM Load its pulse sequence
REM —————————————————————————————————————-
REM A 2-pulse sequence for Slave board#2
PROCwrite_data_string(“NP=2”): PROCdisp_str
PROCwrite_data_string(“PL2=6”): PROCdisp_str
PROCwrite_data_string(“DL2=6”): PROCdisp_str
PROCwrite_data_string(“CH2=12”): PROCdisp_str: REM Put it on Chans. 1 & 2
PROCwrite_data_string(“PV6=10mS”): PROCdisp_str
PROCwrite_data_string(“DV1=20mS”): PROCdisp_str
PROCwrite_data_string(“DV6=100mS”): PROCdisp_str: REM 100mS arbitrary (<2Sec)
PROCwrite_data_string(“SB=2”): PROCdisp_str: REM select Slave board#2
PROCwrite_data_string(“BS=E”): PROCdisp_str: REM Enable it
PROCwrite_data_string(“LB”): PROCdisp_str: REM Load its pulse sequence
REM —————————————————————————————————————-
REM Now the Master board pulse sequence
PROCwrite_data_string(“NP=8”): PROCdisp_str
PROCwrite_data_string(“RT=2”): PROCdisp_str
PROCwrite_data_string(“PL1=1”): PROCdisp_str
PROCwrite_data_string(“PL2=2”): PROCdisp_str
PROCwrite_data_string(“PL3=3”): PROCdisp_str
PROCwrite_data_string(“PL4=4”): PROCdisp_str
PROCwrite_data_string(“PL5=5”): PROCdisp_str
PROCwrite_data_string(“PL6=6”): PROCdisp_str
PROCwrite_data_string(“PL7=7”): PROCdisp_str
PROCwrite_data_string(“PL8=8”): PROCdisp_str
PROCwrite_data_string(“DL1=1”): PROCdisp_str

PROCwrite_data_string(“DL2=2”): PROCdisp_str
PROCwrite_data_string(“DL3=3”): PROCdisp_str
PROCwrite_data_string(“DL4=4”): PROCdisp_str
PROCwrite_data_string(“DL5=5”): PROCdisp_str
PROCwrite_data_string(“DL6=6”): PROCdisp_str
PROCwrite_data_string(“DL7=7”): PROCdisp_str
PROCwrite_data_string(“DL8=8”): PROCdisp_str
PROCwrite_data_string(“CH1=12345678”): PROCdisp_str: REM Put pulses on all chans.
PROCwrite_data_string(“CH2=12345678”): PROCdisp_str
PROCwrite_data_string(“CH3=12345678”): PROCdisp_str
PROCwrite_data_string(“CH4=12345678”): PROCdisp_str
PROCwrite_data_string(“CH5=12345678”): PROCdisp_str
PROCwrite_data_string(“CH6=12345678”): PROCdisp_str
PROCwrite_data_string(“CH7=12345678”): PROCdisp_str
PROCwrite_data_string(“CH8=12345678”): PROCdisp_str
PROCwrite_data_string(“PV1=10uS”): PROCdisp_str
PROCwrite_data_string(“PV2=20uS”): PROCdisp_str
PROCwrite_data_string(“PV3=30uS”): PROCdisp_str
PROCwrite_data_string(“PV4=40uS”): PROCdisp_str
PROCwrite_data_string(“PV5=50uS”): PROCdisp_str
PROCwrite_data_string(“PV6=60uS”): PROCdisp_str
PROCwrite_data_string(“PV7=70uS”): PROCdisp_str
PROCwrite_data_string(“PV8=80uS”): PROCdisp_str
PROCwrite_data_string(“DV1=200uS”): PROCdisp_str
PROCwrite_data_string(“DV2=210uS”): PROCdisp_str
PROCwrite_data_string(“DV3=220uS”): PROCdisp_str
PROCwrite_data_string(“DV4=230uS”): PROCdisp_str
PROCwrite_data_string(“DV5=240uS”): PROCdisp_str
PROCwrite_data_string(“DV6=250uS”): PROCdisp_str
PROCwrite_data_string(“DV7=260uS”): PROCdisp_str
PROCwrite_data_string(“DV8=2Sec”): PROCdisp_str
PROCwrite_data_string(“RC=60”): PROCdisp_str
PROCwrite_data_string(“SB=0”): PROCdisp_str: REM Reselect Master board
PROCwrite_data_string(“GO”)
REM Call PROCdisp_str immediately to display result of GO command and let it
REM wait until pulse generation finishes and PPG will talk to us again.
REM Note: A call to PROCsee_dv is not needed here because the outer
REM REPEAT-UNTIL loop in FNread_data_string has the side-effect of
REM toggling the Data-Valid line to get the attention of the MASP
REM handling code.
PROCdisp_str
REM Unaddress the PIC device and exit
PROCwrite_byte(ASC(“@”))
END
:
DEFPROCinit
PRINT “Initialising bus...”
msg%=1 :REM Initialise to ‘Messages On’
SYS “OS_Byte”,151,&6C,244 :REM Initialise CB2=HI
PROCset_bus_read: REM Set MASP bus direction to read
ENDPROC
:
DEFPROCwrite_byte(byte%)
REM Write a byte on the MASP bus and send data valid
REM First check if bus is set to READ or WRITE
REM If MASP bus direction is READ then it must be set to WRITE
IF (rw_flag%<>0) THEN PROCset_bus_write
SYS “OS_Byte”,151,&60,byte%
PROCdv
ENDPROC
:
DEFPROCset_bus_read
REM Set the MASP bus direction (ie. VIA data direction register) to READ

REM msg%=1 indicates if message below should be printed
SYS “OS_Byte”,151,&62,%00000000 : REM SET VIA DDRB TO READ MODE
rw_flag%=1 : REM Reflect bus direction in S/W flag
IF msg% THEN PRINT “******MASP bus set for READ”
ENDPROC
:
DEFPROCset_bus_write
REM Set the MASP bus direction (ie. VIA data direction register) to WRITE
REM msg%=1 indicates if message below should be printed
SYS “OS_Byte”,151,&62,%11111111 : REM SET VIA DDRB TO WRITE MODE
rw_flag%=0 : REM Reflect bus direction in S/W flag
IF msg% THEN PRINT “******MASP bus set for WRITE”
ENDPROC
:
DEFPROCdv
REM Send Data Valid (Hi->Lo on the CB2 line) and wait for bus to “settle”
SYS “OS_Byte”,151,&6C,244 : REM CB2=HI
PROCshort_delay
SYS “OS_Byte”,151,&6C,192 : REM CB2=LO
PROCshort_delay
SYS “OS_Byte”,151,&6C,244 : REM CB2=HI
PROCshort_delay
ENDPROC
:
DEFPROCshort_delay
REM A short delay for the slow PIC H/W to see DV signals/settling time etc.
REM Settling time is 10mS
TIME=0
REPEAT
UNTILTIME>=1 : REM WAS 10
ENDPROC
:
DEFPROCwrite_data_string(string$)
REM This subroutine writes a data string on the MASP bus
REM Note: DATA as opposed to INSTRUCTIONS must have bit7 set
PRINT “Preparing to send data string to device... ”“”;
FOR A%=1 TO LEN(string$)
 VDU ASC(MID$(string$,A%,1))
 PROCwrite_byte(128+ASC(MID$(string$,A%,1)))
NEXT
PRINT “”“”‘“Sending string terminator <CR>”
PROCwrite_byte(13+128): REM <CR> Terminates string
PROCpause
PRINT “Data string now sent”
ENDPROC
:
DEFPROCaddress_device(string$)
REM Send the 5 bytes of chars and numbers to address the device
PRINT “Preparing to address device ”;string$;“...”
FOR A%=1 TO 5
 PROCwrite_byte(ASC(MID$(string$,A%,1)))
NEXT
PRINT “Device ”;string$;“ now addressed”
ENDPROC
:
DEFPROCpause
REM Simple subroutine to wait a 1 seconds for the user to read the display etc.
TIME=0
REPEAT
UNTILTIME>100
ENDPROC
:
DEFFNread_data_string

REM More sophisticated version - It can be called during pulse generation.
REM It works by constantly attempting to read a byte from the PPG on the
REM MASP bus in the outer REPEAT-UNTIL loop. If the pulse generator is
REM producing pulses and therefore not listening on the MASP bus, its port
REM lines will float high and 0xFF will always be read. When pulse
REM generation ceases, the inner REPEAT-UNTIL loop will be able to read
REM the characters forming the response to the last command and construct
REM the string it returns in variable ‘string$’.
LOCAL string$
string$=“”
REM This function reads a data string from the device
PRINT “Preparing to read a string from the PIC device...”
ff_count%=0
msg%=0 :REM Turn Messages Off while reading / waiting to read string
REM Check if &FF was read - if so loop until PPG is listening again
REPEAT
 PROCwrite_byte(ASC(“<”)) :REM Send MASP “<” char and Hi->Lo->Hi on DV
 PROCset_bus_read :REM Set MASP bus direction to read
 REPEAT
 SYS “OS_Byte”,151,&6C,192 :REM Send CB2=LO
 PROCshort_delay :REM Wait for PIC to put byte on bus
 SYS “OS_Byte”,150,&60 TO ,,A% :REM Read byte put on bus by PIC device
 REM Read data should have the top bit set
 IF A% < 128 THEN PRINT “ERROR; A%=”;A% : STOP
 REM First check if &FF was received (ie. PPG not listening)
 IF (A%=&FF) THEN
 ff_count%+=1 :REM Read &FF so increment ff_count%
 ELSE
 ff_count%=0 :REM valid char so zero ff_count%
 ENDIF
 A% = A% AND 127 :REM Strip the top bit
 IF (A% >=32 AND A% < 127) THEN
 string$=string$+CHR$A%
 ELSE
 ENDIF
 PROCshort_delay :REM Wait for PIC to start watching for Lo-> Hi on DV
 SYS “OS_Byte”,151,&6C,244 :REM Send CB2=HI
 PROCshort_delay :REM Wait for PIC device to disable its O/P buffer
 UNTIL (A% = 0 OR ff_count% <> 0)
UNTIL (ff_count% = 0)
msg%=1 :REM Turn Messages on again
REM Null terminator seen, all bytes now read from PIC device, Now;
REM (1) Turn bus direction to write
REM (2) Put “>” char on bus to signal PIC device must exit “Read Device Mode”
REM (3) Send DV (Hi->lo) so PIC device receives “>” & clears its ENWR flag
PROCwrite_byte(ASC(“>”))
=string$
ENDPROC
:
DEFPROCdisp_str
REM Read and display the error_string from the PPG
readstr$=FNread_data_string :REM Read a data string from device
IF readstr$ <> “OK” AND readstr$ <> “??” THEN
 VDU7
 PRINT “Caution: String was ”“”;readstr$;“”“”‘
 dummy%=INKEY(400)
ELSE
 PRINT “String was ”“”;readstr$;“”“”
ENDIF
ENDPROC
:
DEFPROCerror
PRINT ‘“ERROR HANDLER: Reseting CB2=HI (ie. DV=HI)”

SYS “OS_Byte”,151,&6C,244 :REM Reset CB2=HI
REPORT:PRINT “ at line ”ERL
STOP
ENDPROC
:
DEFPROCsee_dv
REM Make the PPG see dv and prepare to read from the MASP bus
FOR I%=1 TO 10
 PROCwrite_byte(0): REM Make it see dv
NEXT I%
ENDPROC

(3) Specifications (individual pulse board):
Number of pulses generated: 1* n + 8.
Number of possible recycle−to positions: 1, m - 8, m . n.
Number of independently specifiable pulse lengths: 1−8.
Number of independently specifiable delay lengths: 1−8.
Number of channels from which any pulse may emerge: 1−8.
Minimum & maximum pulse lengths (4MHz clock): 1−16383µS, 1µS steps

1−16383mS, 1mS steps
1−16383Sec, 1Sec steps
1−16383Min, 1Min steps

Minimum & maximum delay lengths (4MHz clock): x−16383µS, 1µS steps
1−16383mS, 1mS steps
1−16383Sec, 1Sec steps
1−16383Min, 1Min steps

x=60µS for Delays#1−#2
x=94µS for Delay#3
x=109µS for Delays#4−8
x=x+37µS−y for a recycle

 delay.
if n / 3 and m 0 3 then
y=34µS otherwise y=0.

Minimum & maximum recycle count values: 1−65535, steps of 1 or
unlimited.

Minimum & maximum external clock frequencies: DC−4MHz guaranteed with
current 4MHz rated PIC
chips. Frequencies 10MHz−
16MHz will probably work
too. 10MHz rated PIC chips
may be needed for

 frequencies >10MHz.
Best to test external clock

frequencies >4MHz before
using on live experiment.

(4) Bugs
(a) The most complicated section of the software deals with scrolling of the

LCD ‘window’ within the virtual editor display. It is difficult to eliminate all bugs from such
code. Occasionally after certain edits the LCD is known to show erroneous entries such as
something like;

P1=1µS
P1=1µS
P2=123µS
P3=1234µS

where the P1 pulse label is incorrectly written twice. This a benign bug and can be cleared
by scrolling up/down the display causing the bad section to be repainted. If this is a problem,
please make a note of the exact circumstances under which it occurs to aid debugging.

(b) For pulse sequences containing no long† pulse or delay values, pulse
generation cannot be stopped with the <Start/Stop> key − Only a hard−reset will halt pulse
generation. Note: Only one pulse or delay (eg. the last/repetition-time delay) in the pulse
sequence needs to be long to avoid this bug,
† ‘Long’ means > 32µS for pulses and typically 1 150µS for delays.

(c) Due to the fact that PICs internally divide their clock input frequency by a
factor of 4, it is possible that there will be small differences in time between the start-of-
pulse-generation-time on the master and any of the three slave boards. These differences
will always be less than 1 machine cycle (ie. <1µS with the internal 4MHz clock) and will
remain constant until the pulse generator is Reset or switched off/on again − that is, it will
not result in pulse jitter. More recent versions of the PIC pulse generator have extra H/W to
eliminate this problem. If this is a problem on older (eg. the 19" rack mounted units) please
consult Alan Betts regarding possible modification.

(5) Possible Future Enhancements 2
If RF noise from the system is a problem it may be possible to use the
PIC’s SLEEP instruction to put them into a dormant state when
pulses are not being generated or the system accessed by a user etc.

