PIC PULSE GENERATOR DOCUMENTATION (Version 1.10)

© T.P.Crane, 21-SEP-1998 19:57:26.

Last revised: 03-SEP-2003 17:34:26.

Note: New/altered material has been highlighte@ ib.
(1) History & Introduction

The PIC PulseGeneratois the latestin aline of PulseGeneratorslesignecand
build by the NMR group.Thefirst unit dueto Tony Kentis a standalonelesignbasedon a
Z80 microprocessomwith control and display via front panel keys and 7-segment_ED
displays.

The next PulseGeneratordesignuseda BBC B Microcomputerto enter,edit,
displayandgeneratehe pulsesequenceCounter/timersn themachine’sVIA 65221/0 chip
actually producedthe raw pulseswhich were cleanedup and madeavailableto the outside
world by a simple user—poriplug—in demultiplexerbox. With almostall of the work being
donein softwareit madefor a flexible easy—-to—modifypulse generator.The ideafor the
editing display is from Brian Cowan and the software was written by the author.

Upgradingto the then new 32bit RISC processorArchimedesmachinesthe
nextpulsegeneratofsoftware)usedthe samedemultiplexerox, which wasdrivenagainby
a 6522 VIA chip on the plug—in Acorn I/O card which emulatedthe I/O facilities of the
BBC Micro on the Archimedes. Unfortunately this design suffered from delay-length
‘jitter’ of the orderof afew uS. Thejitter is dueto the refreshof the computer'sDRAMS,
makingit difficult or impossibleto eliminate.While not makingthe systemunuseablat is
undesirable.As a consequencehis design was never used in experimentalwork and
prompted yet another design.

The 50MHz pulsegeneratomwas designedwith very short (sub—microsecond)
pulsesfor NMR work on solids in mind. It usesthe sameArchimedesdataentry/display
systemandis alsocontrolledin realtimeby the Archimedesvia the I/O card’'s 1MHz bus.
Both pulsesand delaysare producedby custom32bit, mutually triggering counter/timers
insidethe 50MHz pulsegeneratobox. Thelogic wasdesignedy Alan Betts. Thisapproach
eliminates the delay—jitter problems of the previous design.

There are a numberof drawbacksto thesecomputerbasedpulse generators
which have prompted the design of the PIC pulse generator. Some of these are;

o Locks up a expensivecomputerfor a relatively trivial job which
could easily be doing something more befitting its capabilities.
o Computersand their monitors are notorious sourcesof RF noise

which finds its way into spectrometersetc. to which the pulse
generatotis attached. The noisestemsfrom crystalclocksinsidethe
computer which together with the Fourier componentsof their
division frequenciegproductionof which are an inherentfeatureof
the bussesof microprocessorsproducea broadfrequencyswatheof
radio frequency pollution. Opto—isolationis usually only partially
effectivein removingthe noisewhich is oftenhighly frequencystable
makingit difficult to removeby signalaveraging.This is becauset

cangetinto spectrometersia a variety of routes;Bussesnside and
outside the computer/monitorcan act as antennas,radiating the
signals.Being high frequencieghey cancapacitativelycoupleacross
opto—isolators.They can be inducedin the braid of coax cables,
propagate via earth loops etc.

The PIC pulse generatoris based around 8+3 PIC16C84 or PIC16F84
microcontrollerchipsanda 2KByte EEPROMmemorychip to storepulsesequences£ach
P1C16C/F84chip containsonly 1Kword EEPROMprogrammemory,36/68 bytesof RAM,
and64 bytesof non—-volatiledataEEPROM- hencethe needfor the multiple chipsacross
which the functionality of the designis split. PIC chips usethe Harvard Architecturefor
securityreasonsandhenceall their bussegto memory,l/O portsetc.)areinternalto the chip
which should eliminate the bus-radiatingproblems of computersand microprocessor
designsusing the traditional Von Neumannarchitecture.The instrument’sdisplay usesa
4x16 digit LCD modulefor dataentry/displayplus afew LEDs. Again this shouldbe much
less noisy than a computermonitor. The designattemptsto reproducethe dataentry &
editing displayof the previouscomputerbasedonesby usingthe LCD asa ‘window’ which
scrolls up and down a ‘virtual’ editor display.

New Features in PIC Pulse Generator Version 1.10:

e A bugfix for the master-slave pulse sequencesrepetition-period re-
synchronisatiorfeaturewhich was brokenin version1.00 whenthe
‘Multi Address System Protocol* (MASP) computerinterface was
introduced.

¢ An InteractiveStop Commandfor the MASP computerinterface.Previously,
once pulsegenerationhad beenstartedby the MASP GO command
the computer program had to wait until the pulse generatorhad
finished executingthe programmedsequence— for sequencesvith
long delay times and/or large recycle counts this can be a
considerabldength of time. The InteractiveStop commandprovides
the same feature as the Stop/Startfront panel button — that is,
pressingthe buttonwill halt pulsegenerationmmediately.Now the
computer can interactively stop pulse generationby writing the
(lower case)'s’ characteion the MAS buslong enoughfor the PPG
to seeit. A periodof a secondshouldbe sufficient.No accompanying
MASP DataValid Hi—Lo transitionis neededStrictly speakingthis
goes outside the MASP. This is not a problem for two reasons;
(1) The PPGwill be the MASP currently ‘addresseddeviceon the
bus so no other device on the samebus should respondevenif it
iImplements ans’ command.
(2) The PPG'sinstructionsetis all upper-cas§MASP data mode)
and the ‘s’ is lower-case so the PPG will not subsequently
misinterpret the ‘s’ as part of a true command.

(2) User Guide

(A) Initial Data Entry.

This is the same as previous designs. The required input is;

Number of Pulses in the sequence

Pulse to recycle to

Number of times to recycle (Enter O for infinity)

The Pn/Dn labelsand channelspecifiersfor the N pulsesspecified
above.The Pn/Dn labelscanbe anythingin the rangeP1-P8&
D1-D8. The channelspecifierslist the channel(seachpulsewill
appearon. They arelists of betweenl and 8 digits in the range
1-8in anyorder.Egs.“5” for pulse#2meanghe secondoulsein
the sequenceavill emergeon channel5 only. “6254” for pulse#7
would mean the 7th pulse emerges on channels 2,4,5 & 6.

Thevaluesandunitsof the pulsesanddelays.Valuesarein therange
1-16383 for pulses and x-16383 for delays, where the ‘X
dependson the position of the delay in the sequence.See
specificationssectionbelow for more details. Units are one of;
uS, mS, Secondr Minutes. Valuesare typedfirst and entered
with the <Enter>key. Units are enteredby hitting <Enter>over
the the required symbol in the “umSM” prompt.

The pulse sequence is then complete and control passes to the editor menu

(B) Pulse Sequence Editing.

As mentionedabovethe pulsesequenceditoris accessetyy scrollingthe LCD
window aroundthe virtual displayusingthe 4 cursorkeysandmodifying the sequenceising
other key-strokes. Here is an annotated example pulse sequence from the virtual displ

(a0) ! 1
(al1) P12345678
(a2) D12345678
(@3) cccccccce
(a4) 11113453
(ab) 2 2 6

(ab) 3 7

(@7) 4

(a8) 5

(@9) 6

(a10) 7

(a11) 8

(b0) P1=1pS

(b1) P2=12uS

(b2) P3=123uS

(b3) P4=1234uS

(b4) P5=12345uS

(b5) P6=140mS

(b6) P7=100mS

(b7) P8=2089mS
(c0) D1=100uS

(c1) D2=12345uS
(c2) D3=1mS

(c3) D4=10mS

(c4) D5=100mS

(cH) D6=1000mS
(c6) D7=1Sec

(c7) D8=10Min

(d0O) Recycle# 65123

The editing options for each line/group of lines are given below.

(@0) Both the numberof pulsesin the sequencendthe recycle-toposition canbe
altered by clicking the <Enter> key over the arrow—head or
arrow—tail moving left or right to the desired new position and
clicking <Enter>and secondtime. Naturally invalid choicessuchas
recycle-to pulse > number—of-pulses are rejected.

(al-a2) Pn andDn pulse/delaylabelsare modified by pressinga numberkey over the
pulse/delay# to be modified. The numberpresseddefinesthe new
Pn/Dn label.

(al3) Pressinga numberkey overthe ‘C’ for a particularpulsewill addthatchannel
to the list of channelsthe pulse will emergefrom. That list is
displayed vertically over lines a4—all.

(a4—all) Pressingthe <Delete>key over a channelspecifierfor a particularpulse will
removethat channelfrom the list of channelsthe pulsewill emerge
from.

(b0-b7) Both thePn pulse label values and units can be modified here.

(@) To modify the value — overtypeit with the new value and hit
<Enter>over any part of the numberto enterit. Hit <Delete>to
discardany changesnade.Note:to changefor example, 1000—
100, the string “1000” can be overtyped with “0100".

(b) To modify the units — Hit <Enter>over any part of the units
string, eg. over the 'S’, ‘e’ or ‘c’ of “Sec”. The units chooser
string “umSM” thenappearsFinally, hit <Enter>overa symbol
for the desired new units.

(cO-c7) Editing the Dn delaylabelsis the sameasfor Pn pulselabels.Therearesome
additionalissuesherewhich relateto pS units delays.If too small a
valueis enteredfor a particulardelay pointedto by a label an error

messageavill be printed. The messagevill referto a delayfor which
the value was too small. Note: This doesnot necessarilymply that
delaywasthe only onefor which the valuewastoo small. It doesnot
evennecessarilyneanthatdelayhadthelongestminimumacceptable
value of the delaysreferredto by that label. After the error message
the delay value will be unchangedand the user must leave it
unchanged or choose a larger value.

A similar situationcanoccurwhenDn unitsaremodified.Eg. if a particularDn
was 5mS and the user modified the units to uS an error will occur
becausehe pulsegeneratorcannotgeneratea delay asshortas5uS.
The units will remainunchangedand the usermustfirst changethe
Dn valueto somethingacceptablytargerandthenchangethe unitsto
US. Note: Undercertaincircumstance®n label valueswith pSunits
canalter ‘spontaneouslyby a few 10sof uSwheneditsare madein
lines a0—a2.This is an unfortunateside effect of the way pulse
sequencenformationis storedin the PIC chipsmemorytogethemwith
the very limited amountof memoryavailablein thesechips.A future
revisionof the softwaremay modify this behaviour.In the meantime
the usershouldcheckDn labelvaluesafter any modificationsin lines
a0-az2.

There are some additional issues concerning the recycle delay in slave
sequenceghe user should be aware of: The slave board recycle
period synchronisationrmodification in vers. 0.21 makesthe slave
boardrecycledelay value enteredby the user effectively redundant
sinceit is now controlledby the masterpulsegenerator thatis, the
slave boardspulse sequencesiow recycle when the masterboards
signalsthem to. For compatibility with the filesystem and master
sequencegsheuserstill mustentera valuefor the slaveboardrecycle
delay.lt is theresponsibilityof the userto entera suitablyshortvalue
suchthanthe total slaveboardpulsesequencéengthis shorterthan
or_equal to that of the total masterpulse sequenceNote: If this
condition is not fulfilled, the result should be that the slave board
sequencavill recycleeg.oncefor every-othemasterpulsesequence
recycle.Enteringa slaverecycledelay of 150uSshouldbe suitable
for all pulsesequenceandis thereforethe recommendedalue. For
simple pulse sequencesmaller valuesmay be usedif a very short
repetition time is needed,check with PIC Pulse Generatorspecs.
below or reducefrom 150uShby trial-and-errorin the pulsesequence
editor. Pleaseadvise the author of any problemsrelatedto slave
recycle delays.

(d0O) The Recycle value gives the number of times the repeatpart of the pulse
sequenceencompassedy line a0 will be repeatedAs with Pn/Dn
label valuesthe numberis typedwith numerickeysandenteredwith
the <Enter> key. Specifying O produces an infinite recycle count.

(C) Accessing the pulse sequence EEPROM based file-system.

The file-systemis accessediia the <Menu> key and may be enteredat the
initial "Nos Pulses ? " promptandatmostplacesn the Editor
Menu described above. The initial menu appears as follows;

Scrolling left with the « cursorkey and hitting <Enter>over any part of the
string "Filesys" will accesghe file-systemmenuwhich appears
as follows, eg;

From here;
e The« & — cursorkeyscanbe usedto chosebetweenthe options
displayedon the top row (respectivelyLOAD, SAVE, RENAME,
DELETE the current pulse sequence and EXIT the file-system mer
e TheT & | cursorkeysscroll throughthe file-system'scatalogueof
pulsesequenceslhe exampleaboveshowsthe 12th pulsesequence
whose nameis "Tom's T1" is the currently selectedone. In this
versionof the pulsegenerato6 pulsesequencesanbe storedby the
file-system.

¢ Loadinga pulsesequence- Press<Enter>while the cursoris overthe'LD'. If
successful the system responds with 'Done.'

e Savinga pulsesequence- Press<Enter>while the cursoris overthe'SV'.
The menu then displays, eg.;

The pulsesequenceanthenbe savedwith the samename(Tom'sT1) or anew

namecanbe enteredHit <Enter>to saveunderthe samename Hit T
orl cursor keys to enter a new name. The menu then responds;

ABCDEFGHI J KLIMNGCP

New?
12 Toms T1

The new filename is constructedby choosing charactersfrom line#2 and
insertingtheminto line#3.The T & | keystogglethe cursorbetween
lines2 & 3. The« & — keysselectwhich characteto choosefrom
line#2 and whereto placeit in the filename being constructedin
line#3. Hitting <Enter> over a characterin line#2 selects that
characterand hitting <Enter>over a position in line#3 insertsthe
selectedcharacterat that position. Hitting <Enter> over line#3 a
secondtime completesthe operationand savesthe pulse sequence.
Any* of the 256 charactergieneratedy the display canbe usedin a
filename and are accessedyy using the < and — keys to scroll
line#2. Note: The display generatesnany specialsymbol characters
aswell asa variety of accenteccharactersSomeexamplefilenames/

pulse sequences have been pre-inserted into the EEPROM.

T There is one exception.
The undefined character
which occurs one place
to the left of the first
instanceof the ‘W’ may
not be used.

e Renaminga pulsesequence- Press<Enter>while the cursoris overthe'RN'.
The menu then displays, eg.;

ABCDEFGHI J KLIMNOP

Mbd?Tom s T1
12 Toms T1

The procedurefor modifying the filenamedisplayedin line#3 with characters
selectedrom line#2is the sameasdescribedhbovefor savinga pulse
sequence with a new name.

¢ Deletinga pulsesequence- Press<Enter>while the cursoris overthe'DL".
The menuthenrespondswith " Sur e?" . Hit <Enter>to confirm the
delete operation or hit any other key to back out.

e EXxiting the file-systemmenu— Press<Enter>while the cursoris over the

'‘EXIT'. If apulsesequenceavasloadedfrom the EEPROMor a pulse
sequencewas already present before the file-system menu was
invoked, control passedo the editor menu,otherwisecontrol passes
to the initial data entry procedure for a pulse sequence to be entere

(D) Operating the Slave pulse generator boards.

The Slavepulsegeneratoboardsare accessedan exactlythe sameway asthe
MasterpulsegeneratorTwo new conceptsaanda new menuhavebeenaddedto control the
Slave boards. The two concepts are;

(1) The notion of a ‘currently selected pulse generator board’
(2) The Enable/Disable status of a Slave pulse generator board.

Both entities can be displayedand alteredvia the Slave Board'smenuwhich is accessed
from the main menu;

by hitting <Enter>over any part of the string" Sl v Br ds". An exampleSlave boards
menu is;

St atus: EDD

Sel ected: O

The Enable/Disabletatusof the 3 slaveboardsis shownon line 2 andthe currentlyselected
pulsegeneratotboardis shownon line 3. In the exampleslave board#1is enabled,slave
boards#& #3 aredisabledandthe currentlyselectedulsegeneratoboardis board#0- the
masterpulse generator.The currently selectedpulse generatorboard can be changedby
hitting a numerickey in the range[0—-3], 0 beingthe masterpulsegeneratoboardand1-3
beingthe 3 slaveboards.The enable/disablstatusof the 3 slaveboardscanbe changedoy
making that slave boardthe currently selectedboard(ie. hit a numerickey 1-3) and then
using any of the cursorkeysto toggle its enable/disabletatus.To leavethe slave boards
menu, hit <Enter> which returns the system to the main pulse sequence editing menu.

From this point hitting the <Start/Stop>key will causethe currently selected
pulsegeneratoboardto be loadedwith the pulsesequencelisplayed
in the editor menu and pulse generation(on the master pulse
generator board plus any enabled slave boards) to be started.

Alternatively, pressingthe <Load> pulse sequenceey will only resultin the

currently selectedoulsegeneratoboardbeing loadedwith the pulse
sequencalisplayedin the editor menu.The <Load> pulsesequence
key permitseachof the pulsegeneratoboardsto be preloadedwith
whateverpulsesequenceés requiredbefore startingpulsegeneration.
This is the way a parallel pulse sequence is built up.

Note (1) As far as the editor menu and file-systemis concernedgachpulse

Note (2)

sequencdoadedinto eachpulsegeneratoiboardis a separateentity
which mustbe savedasanentryin thefile-systemif it will needto be
edited or reused in the future or on another pulse generator board.
The masterpulse generatorboardis always enabledand therefore
must have a pulse sequencdoadedinto it for pulse generationto
work. If the systemis booted,pulse sequencesnly loadedinto the
slave board(s) and the <Start/Stop>key is pressedthen pulse
generationwill not start. Instead,the error message' MPS?" (ie.
Master Pulse Sequence?ill be displayedand the pulse sequence
editor menu will be reentered.

(E) Stopping/Starting Pulse Generation.

The <Start/Stop>key startspulsegenerationlt will continueuntil the recycle
countis reachedor a userhits the key againto stop pulsegenerationNote: If the <Start/
Stop>key is pressedduring a pulsethat pulsewill be cut short. For this reasonit is a bad
idea to hold down the <Start/Stop>key in the hope of ‘manually recycling’ the pulse
sequenceThe <Start/Stop>pbutton’sLED lights whenpulsegenerations in progressAfter
pulse generation has finished the editor display is reentered.

(F) Other Features.

Pressingthe <Escape>key softwareresetsthe pulse generator
and restarts it at the initial pulse sequence entry point.

The pulsegeneratohasanexternalclock input facility. Selecting
this will affect all timing within the system.This is becausaall
timing within the unit is derived from the clock. Internally a
4MHz clock is used.If for examplean 8MHz externalclock is
applied,all pulsesanddelaysproducedwill be ¥z the displayed
values.A front panelLED indicateswhetherinternal or external
clock is in operation.

The ‘Bleep disable’key canbe usedto disablethe bleeperwhich
producesthe ‘keyclick’ etc. This a latching key and its LED
reflects the enable/disable status of the bleeper.

The systemhasa hardwareresetbuttonon the back—panelThis
can be used to regain control of the system in the event it hang
In contrast with the previous microcomputer based pulse
generatorghe PIC systemdoesnot usea relatively slow BASIC
interpreterto producethe recycledelay. Consequentlyminimum

recycle delays are only marginally longer than those of other
delays. Be aware thereforethat if you erroneouslyspecify a
recycledelayof say100uSit will happilygeneratet, burningout
the transmitter/frying your sample etc. You have been warned!

(G) The Computer Control Interface (CCI).
This section describes the operation of the pulse generator from a computer

o The pulsegenerator'somputerinterfaceis an 8-bit parallelport
with 2 handshakéines, modelledon the BBC Micro's UserPort.
Only the CB2 handshake line is currently used.

o The protocolusedby the computerto communicateverthis port
with the pulse generatoris the Multi AddressSystemProtocol
(MASP) due to Alan Betts (AKB). The rest of this section
assumes familiarity with the MASP.

o Not all of the functionality of the pulsegenerator'sront panelis
currently available over the CCI. The remote computer may
define and download pulse sequenceso the Master and Slave
boards and also start pulse generation.There is no remote
computeraccessto the pulse generator'sEEPROM filesystem.
Neitheris it possibleto prematurelystoppulsegeneratiorvia the
CCI. For this reasonthe remotecomputeris unlikely to want to
programan infinite-recycle count (Master) pulse sequenceDue
to architecturallimitations in the pulse generator'shardware,it
cannotconstantlyscanits computerport looking for input from
the computer- in contrastwith previoussimpler MASP devices
producedby AKB. Unlike the simpler MASP devicesthe pulse
generator does not respond instantly (eg. typically within
<100nS)to commandsover the MASP bus. This is becausehe
pulse generator's MASP parsing/handling runs on
microcontrollers rather than dumb logic. It is essentialthe
computerprogrammertakesaccountof theselimitations when
coding. Techniquedor dealingwith themare discussedn more
detail later. See also the in-program commentsin the BASIC
example programs.

o Note: Someexampleprogramsare given belowin BBC BASIC.
Referencesan the following text to the BASIC examplesare
typeset in for clarity.

o Controlling The Pulse Generator From The Computer.

(1) Initialisation. After bootingthe pulse generatowill be in
the MASP bus unaddressed state and must be put in the
addressed statebeforeit will acceptany othercommandsAs laid
downin the MASP specification,eachdeviceon the MASP bus
has a unique ‘factory defined’ 5-digit address.The PIC Pulse

generatorhave addresse®f the form "PPGxy' wherex & y
will typically be numberseg. "01", "02" etc. for each pulse
generator built/upgraded.

Note (a). Beforethe remotecomputersendshe 5-digit addressit
must ‘get the attention’ of the pulse generator'sMASP bus
handling code. The recommendedvay to do this write a zero-
byte severaltimes on the MASP bus with bit7=0. This MASP
command mode inputwill beignoredby otherMASP devicesbut
the pulse generator will see the MASP data-valid hi—lo
transitionsand start listening for its upcoming MASP address.

Note (b). The pulse generatormust receiveits 5-digit address
bytescontiguouslywith eachbyte beingreceivedwithin the pulse
generator'snput byte timeoutperiod of ~65mS,for it to become
MASP addressed. The schemeallows the pulse generator's
internalhardwareto returnto scanningthe front panelkeyboard
if it doesnot becomeaddressed within the timeoutperiods— eg.
if some other MASP device on the bus was being accessed.

(2) Command Mode. Onceaddressed, the pulsegeneratomill
acceptcommandsn MASP Command Mode (bit7=0) and Data
Mode (bit7=1). The pulse generatorhas no device dependent
Instruction Mode commands- all device dependentommands
to the instrumentare sentin MASP Data Mode. The three
essentiaMASP Instruction Mode commandsasdescribedn the
documentMAS_REVIEW.DOC' by AKB areimplementedcand
are;
'@’ - Unaddress the device. ie. clear ENINT ‘flag’ and
return to front panel control.

< - Prepare to reverse buffers and send data to comput
(Read Device Mode, sets ‘flag’ENWR=)L
>’ — Revert to Computers Device data mode

(sets ‘flag’ ENWR=]
Anything else sent innstruction Mode is ignored.

(3) Data Mode. All Data Mode commandsnustbe terminated
with <CR> that is ASCII (13 + 128).

The Data Mode commandsclosely model the front
panel commands.The full setof Data Mode commandsis as

follows;
Command Ar gunent Range Command Descri ption Equiv. line in Sec.(B)
NP=<n> 1<=n<=8 Number of pulses in sequence a0

RT=<m> l<=m<=n Recycle-to position a0

PL<y>=<x> 1<=y<=n, 1<=x<=8 Pulse Label al

DL<y>=<x> 1<=y<=n, 1<=x<=8 Delay Label a2
CH<y>=<string> eg. “1235678",1<=y<=n Channel specification ad4-all
PV<x>=<numeric string><units string> Pulse Value b0-b7

1<=x<=8, <units string> is one of “uS”, “mS”,
“Sec” or “Min”". NB: <numeric string> is
between 1 and 5 characters long,
eg. “PV6=12345uS".
DV<x>=<numeric string><units string> Delay Value (args as Pulse value) c0-c7

RC=<numeric string> Recycle count, range is [0-65535] dO
NB: O=Infinite count
SB=<a> O<=a<=3 Select pulse generator board,
O=master, [1-3]=slave boards #[1-3]
BS=E’ or ‘D’ Enable or disable selected board
LB Load sequence into selected board
GO Start pulse generation using pulse sequence
created by remote computer.
GOl Start pulse generation (immediate) - that is

using whatever pulse sequence was previously
loaded; from remote computer or via the front
panel. Caution: No checks on pulse sequence
validity are made - it is used 'as is'.

Miscellaneous notes: Commands NP through to RC are
mandatory and must all be present to define a valid pulse
sequence. As with front panel entry, by default the master board
IS selected and the three slave boards are disabled. If slave pulse
boards are to be used, they must be Selected (SB=<a>), Enabled

(BS=E) and then Loaded (LB).

(4) Read Device Mode. In this special mode, described in detall
in the document 'MAS_REVIEW.DOC', after receiving the '<’

in Command Mode, the pulse generator is able to send strings
back to the computer. In these responses, which can and should
ideally be requested after every command is sent, the pulse
generator indicates if the command was valid and if not, gives an
indication of what was wrong with it. Most responses consist of

two-letter strings.

strings are <NULL> terminated. The complete list of responses

follows;

Response | Meaning Commands whi ch may produce it Expl anati on

?7? Default Response ** Pulse generator response requested before any commands sent

OK Valid Command * Command was OK **

UC Unrecognised Command ** Command was unrecognised **

IA Invalid Argument NP=<n> Invalid <n>
RT=<m> Invalid <m>
PL<y>=<x> Invalid <x> or <y>
DL<y>=<x> Invalid <x> or <y>
CH<y>=<string> Invalid <y> or <string>

PV<x>=<numeric string><units string> Invalid <x> or
<1 or >5 chars. in numeric
string

IU Invalid Units
TS Too Small
TB Too Big

MP Master Pulse?

DV<x>=<numeric string><units string> Invalid <x> or
<1 or >5 chars in numeric

string
RC=<numeric string> Nonnumeric chars in string
BS=<arg> <arg>is not 'D' or 'E'

PV<x>=<numeric string><units string> 1st char of units invalid
DV<x>=<numeric string><units string> 1st char of units invalid
PV<x>=<numeric string><units string> Number was too small
DV<x>=<numeric string><units string> Number was too small
PV<x>=<numeric string><units string> Number was too big
DV<x>=<numeric string><units string> Number was too big
GO Pulse generation was
requested but no pulse
sequence was loaded into
master pulse generator.
See also front panel error

"MPS?"
Consistency Checking errors produced by GO and LB commands
CCNP? Number of Pulses (NP) was not in the range 1-8
CCRT? Recycle-to position (RT) was not in the range 1-<Number of Pulses>

CCPL<y>? The label for the yth pulse (PL<y>=...) is missing
CCDL<y>? The label for the yth delay (DL<y>=...) is missing
CCPV<x>? The value+units of the xth pulse label (PV<x>=...) is missing
CCDV<x>? The value+units of the xth delay label (DV<x>=...) is missing

Consistency Checking on the pulse sequence is performed prior
to pulse loading and pulse generation (not GOI) to ensure all the
information needed to define the sequence is present and that it is
internally consistent. If the LB or GO commands produce an
error, pulse sequence loading or pulse generation does not take
place. The error should then be corrected before re-issuing the
command.

Note: Occasionaly, the computer may erroneousy
receive some ‘<’ characters embedded in the response string from
the pulse generator. This is caused by buffer direction switching
mis-synchronisation between the computer (sending the ‘<
character to tell the pulse generator to switch to read device
mode) and pulse generator. It is a benign bug but one which the
computer programmer should be aware of if, for example,
parsing the response string to ook for results other than * OK.

(5 Timing & Related Issues. As mentioned above the pulse
generator, cannot always be scanning its MASP bus port. Neither
does it respond to commands on the MASP bus as fast as plain
logic devices do. Also, the MASP protocol has no provision for a
busy-line for the client device to signal the controlling computer
that it is not ready for input.

In the example BASIC programs the general tardiness
of the pulse generator in handling bus commands is dealt with by
inserting some delays. 10mS delays have been inserted into the
Data-Valid signalling, which is applied to each byte sent and
received, to ensure it is slow enough to be seen by the pulse

generatorNote: The 10mSis an arbitraryvalue,usedin testing/
softwaredevelopmentnd significantly shortervaluesmay well
work just as well.

After booting and also after pulse generationhas
ceased,the computer must ‘get the attention’ of the pulse
generator'sMASP bus handling code, before sendingany other
commands.As already mentioned,sending multiple <NULL>
bytesonthe MASP buswill causethe pulsegeneratoto ‘see’ the
Data-Valid line being toggled and will (re-)activateits MASP
handlingcodereadyto acceptcommands:

After pulse generation has
finished, the front paneleditor display will be updatedwith the
just-executedoulse sequencend front panelcommandscan be
enteredagain— eg.to examinethe sequencen the LCD's editor
display. It is probably inadvisableto actually alter the pulse
sequencehere becausethe computerinterfaceis still active (
‘flag’ ENI NT=1) and subsequentommandgrom the computer
will overwrite any changes made.

In the example BASIC programs, between each
completecommand(eg. "NP=5") a delay of typically 2 seconds
has beeninserted. This arbitrary value was largely to permit
viewing of commands as they executed, during software
development/debuggindt. is likely thatmuchshortervalueswill
work too.

It can be inconvenientfor the computerto have to
calculate the length of time a pulse sequenceshould take to
execute and then wait that length of time before calling
PROCdi sp_str in order to check on the validity of the
preceding GO command.

A
more elaborateversion of the pulse generatoresponse-reading
code is presentedin example program In this
second example program is called

immediately after the GO command is executed and
loopsto samplethe MASP bus until

pulse generation has finished and the pulse generator is

responding to MASP bus commands again.

(6) Front Panel LED indicators. Thereare?2 front panelLEDs
which relateto the operationof the CCIl. The‘COMP’ LED is lit

when the pulse generatoris under computercontrol — that is

whenit is in the MASP addressed stateandthe ‘flag’ ENI NT=1

as describedin the document' MAS_REVI EW DOC . The
‘DATA’ LED givesa visual indication of datapassingbetween
the computerand pulse generatorand is modelledon the data
LEDs typically found on Ethernetcardsand hubsetc. Note: At

the time of writing, the currentpulsegeneratoboxesdo not have
aDATA LED - this shouldbe addedwhenthoseunits aregiven
this software (& hardware — see AKB) upgrade.

(7) The BASIC Example Programs. The two following
programsare demonstration®f working codeswhich download
pulse sequenceso the pulse generatorand then executethem.
They are intendedas a guide to programmersvorking in BBC
BASIC/RISCOSor any other programminglanguage/platform
suchasLabview/Microsoftandhavebeenheavily commentedo
that end. The main part of the programat the top definesand
downloadsthe pulse sequencewith the work implementingthe
MASP driver codeetc. beingdoneby lower level FuNctionsand
PROCeduresThe first example PPG_DEMO producesa very
simple pulse sequenceto the master pulse board, and waits
‘manually’ while it executesThe secondprogramPPG_DEMO2
producesplus loadsa coupleof simple pulsesequence$or two
of the slaveboards.Thenit createsa morecomplicatedsequence
for the master board before giving the GO command to
synchronously start the 3 boards generating their pulse
sequences. PPG_DEMX®2 then calls PROCdi sp_str to
‘automatically’ wait for pulse generationto finish and the
responsestring to be returned by the pulse generator.Both
programsendby giving the‘@’ commando unaddress the pulse
generator and therefore relinquish control of the MASP bus.

Exanpl e Program PPG DEMO

REM > ppg_deno

REM Thi s program runs under RI SCOS and drives the PIC pul se generator

REM usi ng the MAS protocol through the User Port. The User Port HWis provided
REM by the 6522 VIA chip on the Acorn I/O Podule. The software interface is via
REM t he BASIC ‘' SYS “Gs_Byte” 150 and 151’ calls. For details see the Acorn I/O
REM Podul e gui de and Rockwel | data book.

REM T. Crane, 3-JUL-2000 21:06: 31

REM Revi sed, 9- NOV-2000 16:22:18

PROCI ni t :REM Initialise the system

ON ERRCR PROCerr or

PROCsee dv: REM Get attention of PPG MASP code
PROCaddr ess_devi ce(“ PPQ00"): REM Send its unique address to PPG

REM Send Data Mbde conmands to the PPG and read back and di splay the
REM r esponse to each one with PROCdi sp_str
PROCdi sp_str

PROCOwWite data string(“NP=1"): PROCdi sp_str

PROCwWite data string(“RT=1"): PROCdi sp_str
PROCwWite data string(“PL1=1"): PROCdi sp_str
PROCwite data string(“DL1=1"): PROCdi sp_str
PROCOWite data string(“CHL=12345678"): PROCdi sp_str
PROCwW i te data string(“PVvV1i=1000uS"): PROCdi sp_str
PROCw i te data string(“Dv1i=1000uS"): PROCdi sp_str
PROCwW i te data_string(“RC=1000"): PROCdi sp_str

PROCOwWite data string(“GJ):

REM Wait 2 seconds [1000*(1000uS pul se +1000uS del ay] for pulses to finish
REM This is because PPG cannot communicate with us during pul se generation

TI ME=0

REPEAT UNTIL (TIME > 200)

PROCsee_dv: REM Re-get attention of PPG MASP code
PROCdi sp_str: REM Di spl ay result of GO command

REM Unaddress the PIC device and exit

PROCwW i te_byte(ASC(“@))

REM PPG i s now under front panel control again

END

DEFPROCI ni t

PRINT “Initialising bus...”

SYS “0OS_Byte”, 151, &6C, 244 :REM I nitialise CB2=H
PROCset bus read: REM Set MASP bus direction to read

ENDPROC

DEFPROCwW i t e_byt e(byt e%)

REM Wite a byte on the MASP bus and send data valid

REM First check if bus is set to READ or WRITE

REM I f MASP bus direction is READ then it nust be set to WRITE
IF (rw flag¥%>0) THEN PROCset bus write

SYS “COS _Byte”, 151, &60, byt e%

PROCdv

ENDPROC

DEFPROCset _bus_read

REM Set the MASP bus direction (ie. VIA data direction register) to READ
SYS “OS_Byte”, 151, &2, 90000000 : REM SET VI A DDRB TO READ MODE

rw flag¥%1 : REM Reflect bus direction in SIWflag

PRI NT “*=*=****MASP bus set for READ

ENDPROC

DEFPROCset _bus write

REM Set the MASP bus direction (ie. VIA data direction register) to WRITE
SYS “OS_Byte”, 151, &2, 9%11111111 : REM SET VIA DDRB TO WRI TE MODE

rw flag%0 : REM Reflect bus direction in SIWflag

PRI NT “*=*=****MASP bus set for WRI TE”

ENDPROC

DEFPROCdv

REM Send Data Valid (H ->Lo on the CB2 Iine) and wait for bus to “settle”
SYS “0OS_Byte”, 151, &C, 244 : REM CB2=HI

PROCshort _del ay

SYS “0OS_Byte”, 151, &C, 192 : REM CB2=LO

PROCshort _del ay

SYS “0OS_Byte”, 151, &6C, 244 : REM CB2=HI

PROCshort _del ay

ENDPROC

DEFPROCshort _del ay

REM A short delay for the slow PIC HWto see DV signals/settling tinme etc.
REM Settling tine is 10nS

TI ME=0

REPEAT
UNTI LTI ME>=1 : REM WAS 10
ENDPROC

DEFPROCW i te_data_string(string$)
REM Thi s subroutine wites a data string on the MASP bus
REM Not e: DATA as opposed to | NSTRUCTI ONS nmust have hit7 set
PRI NT “Preparing to send data string to device... "“";
FOR A%1 TO LEN(string$)

VDU ASC(M D$(string$, A%1))

PROOW i t e_byt e(128+ASC(M D$(string$, A% 1)))

NEXT

PRINT “"“"*“Sending string term nator <CR>"

PROCOW ite byte(13+128): REM <CR> Terninates string
PROCpause

PRI NT “Data string now sent”

ENDPROC

DEFPROCaddr ess_devi ce(string$)
REM Send the 5 bytes of chars and nunbers to address the device
PRI NT “Preparing to address device ”";string$;“...”
FOR A%1 TO 5
PROCwr i t e_byt e(ASC(M D$(string$, A%1)))
NEXT
PRI NT “Device ";string$;“ now addressed”
ENDPRCC

DEFPROCpause

REM Si npl e subroutine to wait a 2 seconds for the user
REM to read the display etc.

TI ME=0

REPEAT

UNTI LTI ME>200

ENDPROC

DEFFNr ead _data_string

REM Si npl e version - nust not be called during pul se generation
LOCAL string$

string$=""

REM This function reads a data string fromthe device

PRI NT “Preparing to read a string fromthe PIC device...”

PROCwW i te_byte(ASC(“<")) : REM Send MASP “<” char and Hi->Lo->H on DV
PROCset bus_read : REM Set MASP bus direction to read

REPEAT

SYS “0OS_Byte”, 151, &6C, 192 : REM Send CB2=LO

PROCshort _del ay :REMWait for PIC to put byte on bus

SYS “0OS Byte”, 150, &0 TO ,, A% :REM Read byte put on bus by PIC device
REM Read data should have the top bit set

IF A% < 128 THEN PRI NT “ERROR; AY%"; A% : STOP

A% = A% AND 127 :REM Strip the top bit

IF (A% >=32 AND A% < 127) THEN

string$=stri ng$+CHR$AY

ENDI F

PROCshort _del ay :REMWait for PICto start watching for Lo->H on DV
SYS “0OS_Byte”, 151, &6C, 244 : REM Send CB2=HI

PROCshort _del ay :REMWait for PIC device to disable its O P buffer

UNTIL (A% = 0)

REM Ter mi nator seen, all bytes now read from PIC device, Now,

REM (1) Turn bus direction to wite

REM (2) Put “>" char on bus to signal PIC device nust exit “Read Device Mde”
REM (3) Send DV (Hi->l0) so PIC device receives “>" & clears its ENVR fl ag
PROCwW i t e_byt e(ASC(“>"))

=string$

ENDPROC

DEFPROCdisp_str
REM Read and display the error_string from the PPG

readstr$=FNread_data_string :REM Read a data string from device
PRINT “String was "";readstr$; "

ENDPROC

DEFPROCerror

Clean up MASP bus after any BASIC interpreter errors
PRINT “ERROR HANDLER: Resetting CB2=HI (ie. DV=HI)"
SYS “OS_Byte”,151,&6C,244 :REM Reset CB2=HI
STOP

ENDPROC

DEFPROCsee_dv

REM Send multiple dummy data-valids to make the PPG invoke its MASP
REM handling code and prepare to read from the MASP bus

FOR 19%=1 TO 10

PROCwrite_byte(0): REM Make it see dv

NEXT 1%

ENDPROC

Example Program PPG_DEMO?2

REM > ppg_demo2

REM This program runs under RISCOS and drives the PIC pulse generator

REM using the MAS protocol through the User Port. The User Port H/W is provided
REM by the 6522 VIA chip on the Acorn I/O Podule. The software interface is via
REM the BASIC ‘SYS “Os_Byte” 150 and 151’ calls. For details see the Acorn I/O
REM Podule guide and Rockwell data book.

REM T.Crane, 3-JUL-2000 21:06:31

REM Revised, 9-NOV-2000 20:48:18

PROCIinit :REM Initialise the system

ON ERROR PROCerror

REM Make the PPG see dv and prepare to read from the MASP bus
PROCsee_dv: REM Get attention of PPG MASP code
PROCaddress_device(“PPG00") :REM Send its unique address to PPG

REM A more complicated example - First a couple of simple pulse sequences
REM are sent to slave boards 1 & 2. Then an 8-pulse sequence is sent to
REM the Master board.

REM Send Data Mode commands to the PPG and read back and display the
REM response to each one with PROCdisp_str

REM First the Slave boards pulse sequences

REM A 1-pulse sequence for Slave board#1

PROCwrite_data_string(“NP=1"): PROCdisp_str
PROCwrite_data_string(“RT=1"): PROCdisp_str
PROCwrite_data_string(“PL1=1"): PROCdisp_str
PROCwrite_data_string(“DL1=1"): PROCdisp_str
PROCwrite_data_string("CH1=1"): PROCdisp_str: REM Put it on Chan. 1 only

PROCwrite_data_string(“PV1=1mS"): PROCdisp_str
PROCwrite_data_string("DV1=100mS”): PROCdisp_str: REM 100mS arbitrary (<2Sec)

PROCwrite_data_string(*“RC=0"): PROCdisp_str: REM RC=0 is OK on Slave boards
PROCwrite_data_string(“SB=1"): PROCdisp_str: REM select Slave board#1
PROCwrite_data_string(“BS=E"): PROCdisp_str: REM Enable it
PROCwrite_data_string(“LB"): PROCdisp_str: REM Load its pulse sequence

REM

REM A 2-pulse sequence for Slave board#2

PROCwrite_data_string(“NP=2"): PROCdisp_str

PROCwrite_data_string(“PL2=6"): PROCdisp_str

PROCwWite data string(“DL2=6"):
PROOwWite data_ string(“CH2=12"):
PROCOwWite data string(“PV6=10n5"):
PROCOwWite data string(“Dvli=20n5"):
PROCOwW i te data_string(“Dv6=100nt"):
PROCwWite data_string(“SB=2"):
PROCwite data string(“BS=E"):
PROCOwite data string(“LB"):

REM

PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi

REM Now t he Master board pul se sequence
PROCwWite data_string(“NP=8"):
PROCwite data_string(“RT=2"):
PROCwWite data string(“PL1=1"):
PROCwWite data string(“PL2=2"):
PROCwite data string(“PL3=3"):
PROCwite data string(“PL4=4"):
PROCwite data string(“PL5=5"):
PROCwite data string(“PL6=6"):
PROCwite data string(“PL7=7"):
PROCwite data string(“PL8=8"):
PROCwite data string(“DL1=1"):
PROCwite data string(“DL2=2"):
PROCwite data string(“DL3=3"):
PROCwWite data string(“DL4=4"):
PROCwite data string(“DL5=5"):
PROCwite data string(“DL6=6"):
PROCwite data string(“DL7=7"):
PROCwite data string(“DL8=8"):
PROCwite data string(“CHL=12345678"):
PROCwite data string(“CH2=12345678"):
PROCwite data_string(“CH3=12345678"):
PROCwite data string(“CH4=12345678"):
PROCwite data_ string(“CH5=12345678"):
PROCwite data_string(“CH6=12345678"):
PROCwite data_string(“CH7=12345678"):
PROCwite data_string(“CH8=12345678"):
PROCOwWite data_ string(“PV1i=10uS’):
PROCOwWite data_string(“PVv2=20uS"):
PROCOwWite data_string(“PVv3=30uS’):
PROCOwWite data_string(“PV4=40uS’):
PROCOwWite data_ string(“PV5=50uS"):
PROCOwWite data_ string(“PV6=60uS’):
PROCOwWite data string(“PV7=70uS’):
PROCOwite data string(“PVv8=80uS"):
PROCOwW i te data_string(“Dv1i=200uS’):
PROCOwW i te data_string(“Dv2=210uS’):
PROCW i te data_string(“Dv3=220uS’):
PROCOWite data_string(“Dv4=230uS’):
PROCOwW i te data_string(“DVv5=240uS’):
PROCOwW i te data_string(“Dv6=250uS’):
PROCOwW ite data_string(“DV7=260uS’):
PROCOwWite data string(“Dv8=2Sec”):
PROCwWite data string(“RC=60"):
PROCwite data_string(“SB=0"):
PROCOwWite data string(“GJ)

REM Cal | PROCdi sp_str inmmediately to display result of GO command and | et
REM wait until pul se generation finishes and PPG wi ||
REM Note: A call to PROCsee dv is not needed here because the outer

REM REPEAT-UNTIL | oop in FNread data string has the side-effect of
REM toggling the Data-Valid line to get the attention of the MASP
REM handl i ng code.

PROCdi sp_str

REM Unaddress the PIC device and exit

PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi
PROCdi

sp_str

sp_str:

sp_str
sp_str

sp_str:
sp_str:
sp_str:
sp_str:

sp_str
sp_str
sp_str
sp_str
sp_str
sp_str
sp_str
sp_str
sp_str
sp_str
sp_str
sp_str
sp_str
sp_str
sp_str
sp_str
sp_str
sp_str

sp_str:

sp_str
sp_str
sp_str
sp_str
sp_str
sp_str
sp_str
sp_str
sp_str
sp_str
sp_str
sp_str
sp_str
sp_str
sp_str
sp_str
sp_str
sp_str
sp_str
sp_str
sp_str
sp_str
sp_str
sp_str

sp_str:

REM Put it on Chans.

1

& 2

REM 100nt arbitrary (<2Sec)
REM sel ect Sl ave boar d#2

REM Enabl e it

REM Load its pul se sequence

REM Put pul ses on al

chans.

REM Resel ect Master board

talk to us again.

it

PROOW i te_byte(ASC(“@))
END

DEFPROCI ni t
PRINT “Initialising bus...”
nmeg%1 :REMInitialise to ‘' Messages On’

SYS “0OS_Byte”, 151, &6C, 244 :REM I nitialise CB2=H
PROCset bus read: REM Set MASP bus direction to read

ENDPROC

DEFPROCwW i t e_byt e(byt e%)

REM Wite a byte on the MASP bus and send data valid

REM First check if bus is set to READ or WRITE

REM I f MASP bus direction is READ then it nust be set to WRITE
IF (rw flag¥%>0) THEN PROCset bus write

SYS “0S Byte”, 151, &60, byt e%

PROCdv

ENDPROC

DEFPROCset _bus_read

REM Set the MASP bus direction (ie. VIA data direction register) to READ
REM nmsg% 1 i ndicates if nessage bel ow should be printed

SYS “OS_Byte”, 151, &2, 90000000 : REM SET VI A DDRB TO READ MODE

rw flag¥%1l : REM Reflect bus direction in SIWflag

I F msg% THEN PRI NT “******NASP bus set for READ

ENDPROC

DEFPROCset _bhus write

REM Set the MASP bus direction (ie. VIA data direction register) to WRITE
REM nmsg%1 i ndicates if nessage bel ow should be printed

SYS “OS_Byte”, 151, &2, 9%11111111 : REM SET VIA DDRB TO WRI TE MODE

rw flag%0 : REM Reflect bus direction in SIWflag

I F msg% THEN PRI NT “******NASP bus set for WRI TE”

ENDPROC

DEFPROCdv

REM Send Data Valid (H ->Lo on the CB2 Iine) and wait for bus to “settle”
SYS “0OS_Byte”, 151, &C, 244 : REM CB2=HI

PROCshort _del ay

SYS “0OS_Byte”, 151, &C, 192 : REM CB2=LO

PROCshort _del ay

SYS “0OS_Byte”, 151, &C, 244 : REM CB2=HI

PROCshort _del ay

ENDPROC

DEFPROCshort _del ay

REM A short delay for the slow PIC HWto see DV signals/settling tine etc.
REM Settling tine is 10nS

TI ME=0

REPEAT

UNTI LTI ME>=1 : REM WAS 10

ENDPROC

DEFPROCW i te_data_string(string$)
REM Thi s subroutine wites a data string on the MASP bus
REM Not e: DATA as opposed to | NSTRUCTI ONS nmust have hbit7 set
PRI NT “Preparing to send data string to device... "“";
FOR A%1 TO LEN(string$)

VDU ASC(M D$(string$, A%1))

PROOW i t e_byt e(128+ASC(M D$(string$, A% 1)))
NEXT
PRINT “"“"*“Sending string term nator <CR>"

PROOWite byte(13+128): REM <CR> Terninates string

PROCpause
PRI NT “Data string now sent”

ENDPROC

DEFPROCaddr ess_devi ce(string$)
REM Send the 5 bytes of chars and nunbers to address the device
PRI NT “Preparing to address device ”;string$;“...”
FOR A%1 TO 5
PROCOw i t e_byt e(ASC(M D$(string$, A%1)))
NEXT
PRI NT “Device ";string$;“ now addressed”
ENDPRCC

DEFPROCpause

REM Si npl e subroutine to wait a 1 seconds for the user to read the display etc.
TI ME=0

REPEAT

UNTI LTI ME>100

ENDPROC

DEFFNr ead _data_string

REM Mor e sophisticated version - It can be called during pul se generati on.
REM It works by constantly attenpting to read a byte fromthe PPG on the
REM MASP bus in the outer REPEAT-UNTIL | oop. If the pulse generator is
REM produci ng pul ses and therefore not listening on the MASP bus, its port
REM lines will float high and OxFF will always be read. Wen pul se

REM gener ati on ceases, the inner REPEAT-UNTIL |oop will be able to read
REM t he characters form ng the response to the |last command and construct
REM the string it returns in variable ‘string$’ .

LOCAL string$

string$=""

REM This function reads a data string fromthe device

PRI NT “Preparing to read a string fromthe PIC device...”

ff_count %0

nmsg%0 : REM Turn Messages Of while reading / waiting to read string

REM Check if &FF was read - if so loop until PPGis listening again
REPEAT

PROCwW i te_byte(ASC(“<")) : REM Send MASP “<” char and Hi->Lo->H on DV
PROCset bus_read : REM Set MASP bus direction to read

REPEAT

SYS “0OS_Byte”, 151, &6C, 192 : REM Send CB2=LO

PROCshort _del ay :REMWait for PIC to put byte on bus

SYS “0OS _Byte”, 150, &0 TO ,, A% :REM Read byte put on bus by PIC device
REM Read data should have the top bit set

IF A% < 128 THEN PRI NT “ERROR; AY%"; A% : STOP

REM First check if &FF was received (ie. PPG not |istening)

| F (A%&FF) THEN

ff _count% =1 : REM Read &FF so increnment ff_count%

ELSE

ff _count%0 :REMvalid char so zero ff_count%

ENDI F

A% = A% AND 127 :REM Strip the top bit

I F (A% >=32 AND A% < 127) THEN
string$=stri ng$+CHR$AY%

ELSE

ENDI F

PROCshort _del ay :REMWait for PICto start watching for Lo-> H on DV
SYS “0OS_Byte”, 151, &6C, 244 : REM Send CB2=HI

PROCshort _del ay :REMWait for PIC device to disable its O P buffer

UNTIL (A% =0 OR ff_count% <> 0)

UNTIL (ff_count% = 0)

nmsg%1 : REM Turn Messages on again

REM Nul | term nator seen, all bytes now read from Pl C device, Now,

REM (1) Turn bus direction to wite

REM (2) Put “>" char on bus to signal PIC device nust exit “Read Device Mde”
REM (3) Send DV (Hi->l0) so PIC device receives “>" & clears its ENVR fl ag
PROCW i t e_byt e(ASC(“>"))

=string$

ENDPROC

DEFPROCdi sp_str
REM Read and di splay the error_string fromthe PPG

readstr$=FNread_data_string :REM Read a data string from device
IF readstr$ <> “OK” AND readstr$ <> “??” THEN
VDU7
PRI NT “Caution: String was "“”;readstr$;“”“""
dumy %=1 NKEY(400)
ELSE
PRINT “String was "“";readstr$;“""”
ENDI F
ENDPROC
DEFPRCOCer r or
PRI NT ‘ “ERROR HANDLER: Reseting CB2=H (ie. Dv=H)"
SYS “0OS_Byte”, 151, &6C, 244 : REM Reset CB2=HI
REPORT: PRINT “ at line "ERL
STOP

ENDPROC

DEFPROCsee_dv

REM Make the PPG see dv and prepare to read fromthe MASP bus
FOR | %1 TO 10

PROCOwite byte(0): REM Make it see dv

NEXT | %

ENDPROC

(3) Specifications (individual pulse board):

Number of pulses generated: 1<n<8.
Number of possible recycle-to positions: 1<m<8, mxn.
Number of independently specifiable pulse lengths: 1-8.
Number of independently specifiable delay lengths: 1-8.
Number of channels from which any pulse may emerge: 1-8.

Minimum & maximum pulse lengths (4MHz clock): 1-16383uS, 1uS steps
1-16383mS, 1mS steps
1-16383Sec, 1Sec steps
1-16383Min, 1Min steps

Minimum & maximum delay lengths (4MHz clock): x—16383uS, 1uS steps
1-16383mS, 1msS steps
1-16383Sec, 1Sec steps
1-16383Min, 1Min steps

x=60uS for Delays#1-#2
x=94uS for Delay#3

x=109uS for Delays#4-8
x=x+37uS-y for a recycle

delay.
if >3 andmx3 then
y=34uS otherwisg=0.

Minimum & maximum recycle count values: 1-65535, steps of 1 or
unlimited.
Minimum & maximum external clock frequencies: DC-4MHz guaranteed with

current 4MHz rated PIC
chips. Frequencies 10MHz-
16MHz will probably work
too. 10MHz rated PIC chips
may be needed for
frequencies >10MHz.

Best to test external clock
frequencies >4MHz before
using on live experiment.

(4) Bugs

(a) The most complicatedsectionof the softwaredealswith scrolling of the
LCD ‘window’ within thevirtual editordisplay.lt is difficult to eliminateall bugsfrom such
code.Occasionallyafter certaineditsthe LCD is knownto showerroneousntriessuchas
something like;

P1=1uS
P1=1uS
P2=123uS
P3=1234uS

wherethe P1 pulselabelis incorrectly written twice. This a benignbug andcanbe cleared
by scrollingup/downthe displaycausingthe badsectionto berepaintedIf thisis a problem,
please make a note of the exact circumstances under which it occurs to aid debugging.

(b) For pulse sequencesontaining no long® pulse or delay values, pulse
generatiorcannotbe stoppedwith the <Start/Stop>key — Only a hard-resetill halt pulse
generationNote: Only one pulseor delay (eg. the last/repetition-timedelay) in the pulse

sequence needs to lmmg to avoid this bug,
T ‘Long’ means > 32uS for pulses and typicai¥50uS for delays.

(c) Dueto the fact that PICsinternally divide their clock input frequencyby a
factor of 4, it is possiblethat therewill be small differencesin time betweenthe start-of-
pulse-generation-timen the masterand any of the three slave boards.Thesedifferences
will alwaysbe lessthan1 machinecycle (ie. <1uSwith the internal4MHz clock) and will
remainconstantuntil the pulsegeneratoiis Resetor switchedoff/on again— thatis, it will
not resultin pulsejitter. More recentversionsof the PIC pulsegeneratohaveextraH/W to

eliminate this problem. If thisis a problem on older (eg. the 19" rack mounted units) please
consult Alan Betts regarding possible modification.

(5) Possible Future Enhancements
o If RF noise from the system is a problem it may be possible to use the
PIC's SLEEP instruction to put them into a dormant state when
pulses are not being generated or the system accessed by a user etc.

